Allowable thickness diminution for hull structure
FOREWORD

DNV GL class guidelines contain methods, technical requirements, principles and acceptance criteria related to classed objects as referred to from the rules.

© DNV GL AS February 2016

Any comments may be sent by e-mail to rules@dnvgl.com

If any person suffers loss or damage which is proved to have been caused by any negligent act or omission of DNV GL, then DNV GL shall pay compensation to such person for his proved direct loss or damage. However, the compensation shall not exceed an amount equal to ten times the fee charged for the service in question, provided that the maximum compensation shall never exceed USD 2 million.

In this provision "DNV GL" shall mean DNV GL AS, its direct and indirect owners as well as all its affiliates, subsidiaries, directors, officers, employees, agents and any other acting on behalf of DNV GL.
CHANGES – CURRENT

This is a new document.
SECTION 1 GENERAL

1 Introduction
The purpose of the present class guideline is to provide the user with general information and methods for assessing the acceptance level of corrosion in hull structures. As not all designs or circumstances can be covered, the instruction herein should be used with particular caution. Acceptance of repair extent and method must be given by the Society.

2 Application
The class guideline applies in general to ships of normal design built of steel or aluminium.

<table>
<thead>
<tr>
<th>Class Notation</th>
<th>Section References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A1 vessels</td>
<td>Sec.1, Sec.2, Sec.3, Sec.7, Sec.8 and App. A</td>
</tr>
<tr>
<td>1A vessels without container ship notation</td>
<td></td>
</tr>
<tr>
<td>100A5 vessels</td>
<td>Sec.1, Sec.2, Sec.4, Sec.7, Sec.8 and App. A</td>
</tr>
<tr>
<td>1A vessels with container ship notation</td>
<td>Sec.1, Sec.2, Sec.5, Sec.7, Sec.8 and App. A</td>
</tr>
<tr>
<td>High speed vessels of steel</td>
<td>Sec.1, Sec.2, Sec.6, Sec.7, Sec.8 and App. A</td>
</tr>
<tr>
<td>Vessels of aluminium</td>
<td>Sec.1, Sec.2, Sec.6, Sec.8 and App. A</td>
</tr>
</tbody>
</table>

Main character of class 1A is introduced in the new DNV GL Rules from 2016-01-01. This class guideline does not apply to vessels with class notation CSR for which the rules have specific requirements for ships in service. See App.C for information on CSR vessels.

3 Definitions and terminology

3.1 Definitions

Table 1 Definitions

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>rule length in m, as defined in applicable rules</td>
</tr>
<tr>
<td>t_{orig}</td>
<td>original "as built" thickness in mm</td>
</tr>
<tr>
<td>t_{min}</td>
<td>minimum thickness in mm including a margin for further corrosion until next hull survey</td>
</tr>
<tr>
<td>TM</td>
<td>thickness measurement</td>
</tr>
<tr>
<td>σ_{ult}</td>
<td>panel ultimate capacity</td>
</tr>
<tr>
<td>σ_y</td>
<td>yield stress</td>
</tr>
<tr>
<td>PULS</td>
<td>"panel ultimate limit strength" is the Society's computer program using non-linear plate theory to calculate a stiffened plate field's ultimate buckling strength. It treats the entire, stiffened plate field as an integrated unit, allowing for internal redistribution of the stresses</td>
</tr>
<tr>
<td>Z</td>
<td>Hull girder section modulus (in deck or bottom as applicable)</td>
</tr>
</tbody>
</table>
3.2 Terminology

The structural terminology applied in the specification of minimum thickness is illustrated in Figure 1 and Figure 2, showing a typical midship area of a double hull tanker and a bulk carrier.

Figure 1 Typical double hull tanker
Figure 2 Typical bulk carrier
SECTION 2 CATEGORIES OF CORROSION

1 General

Corrosion may be divided into the following categories:

General: Where uniform reductions of material are found. Criteria for minimum thickness of hull structural elements may be applied in order to determine average diminution values, see Sec.3, Sec.4 or Sec.5 as applicable. Typically, repairs will include steel replacement to original scantlings and/or reinforcement upon special consideration.

Pitting: Random scattered corrosion spots/areas with local material reductions. The intensity of the pitting must first be estimated before applying criteria, see Sec.7 [1]. Typically, repairs will include renewal of plates, building up pits by welding or application of plastic filler compounds.

Grooving: Local line material loss normally adjacent to welding joints along abutting stiffeners and at stiffener or plate butts or seams. Due to the complexity and effects of groove corrosion, diminution criteria are limited and special repair considerations are required.

Edges: Local material wastage at the free edges of plates and stiffeners, see Sec.7 [2]. Typically, if not renewed, repairs may be carried out by means of edge stiffeners/doublers.

For each of the corrosion categories separate assumptions, criteria and typical repairs should be applied as given in relevant sections, and to the surveyor’s satisfaction.
SECTION 3 ALLOWABLE MATERIAL DIMINUTION FOR GENERAL CORROSION, CLASS 1A1, 1A EXCEPT CONTAINER SHIP

1 General

Criteria for allowable diminution on original scantling is based on the rule philosophy developed for newbuilding approval, and the difference is mainly related to adjustment of probability level since new vessels are considered for a 20 year period.

The corrosion margins may however vary in size depending on the decisive strength criteria. The margins related to yield strength do, for example, normally allow larger diminution than the margins for buckling. It should be noted that due to varying stress levels and different stiffening arrangements simple criteria may not always be generally applied and other considerations might be required. For the main structures of vessels with \(L \geq 100 \) m a list giving acceptable diminution and original thickness is normally supplied by the Society.

2 Assumptions

The following assumptions apply for criteria given in this class guideline:

— the criteria may be applied to normal and high tensile steel i.e. not aluminium or stainless steel unless especially stated.
— special considerations are carried out if the vessel has undergone major conversions e.g. has been lengthened.
— for vessels built with reduced corrosion margins, i.e. register notation \(\text{corr} \) (see Rules for Ships January 1990), the minimum values given below cannot be generally applied.

3 Vessels with length, \(L < 100 \) m

In general, allowable diminution of plate thickness up to 20% and for profiles up to 25% on original values will be accepted. However, the thickness of plating shall not be less than:

\[
\begin{align*}
\text{deck} & \quad t_{\text{min}} > 0.9 \times (5.5 + 0.02 \cdot L) \\
\text{side/bottom} & \quad t_{\text{min}} > 0.9 \times (5.0 + 0.04 \cdot L).
\end{align*}
\]

For vessels with transverse framing in the bottom, inner bottom or upper deck, more thorough calculations may be required. The methods in [4] may be applied by the Society on a case-by-case basis.

4 Vessels with length, \(L \geq 100 \) m

4.1 Structure within 0.4 \(L \) amidships

The allowable material diminution is based on requirements for net scantlings at renewal survey hull. The method includes criteria to local strength, buckling strength and requirement for hull girder section modulus. The maximum allowable diminution will be determined by the requirement that gives the least reduction. It may be relevant to carry out more detailed calculations in order to get more exact and differentiated results. Some provisions for such calculations are given in [5].

4.1.1 Local strength control

The minimum thickness of plates, stiffener/girder webs or flanges at renewal survey may be determined from the following:

general corrosion criteria: \(t_{\text{min}} = k \cdot t_{\text{orig}} \)
Allowable thickness diminution for hull structure

$t_{orig} = \text{original 'as built' thickness (Documented owner's addition will be subtracted)}$

$k = \text{diminution coefficient from Table 2 or Table 3.}$

4.1.2 Buckling control in bottom and deck area

The buckling control for plates and stiffeners shall be carried out according to the PULS code.

A buckling utilisation factor, η, of the following shall be used, depending on position of each panel and types of stiffeners used, see Table 1.

| Table 1 Buckling utilization factors depending on position of panel and types of stiffeners used |
|---|---|---|
| **Longitudinally stiffened ships** | **Deck area panels within 0.15 D** |
| | *(including lower side and hopper area)* | **Bottom area panels within 0.15 D** |
| | *(except side and hopper area)* | |
| L or T profile longitudinals | 1.0 | 0.85 |
| Flatbar or HP bulb longitudinals | 1.1 | 0.94 |
| **Transversely stiffened Ships** | **Deck area panels within 0.15 D** |
| | *(including lower side and hopper area)* | **Bottom area panels within 0.15 D** |
| | *(except side and hopper area)* | |
| L profile, T profile, flatbar or HP bulb stiffeners | 1.0 | 0.85 |

In cases where the acceptance criteria in [4] give unreasonably low allowable diminution of original scantlings, e.g. less than 5 – 10%, the Society may reconsider the acceptance criteria based on a case by case evaluation.

Allowable still water bending moments

The maximum, allowable still water bending moment for seagoing condition, given in the appendix to the classification certificate or an approved loading manual, shall be applied in combination with the wave bending moment according to the DNV Rules Pt.3 Ch.1 Sec.5 (probability of exceedance of 10^{-8}).

When two still water bending moment limits are given (homogenous and alternate), the homogenous limit shall be used in the calculations.

If no maximum allowable still water bending moment is given, a maximum rule still water bending moment should be calculated according to the same rules provided that no approved loading conditions exceed this value.

The longitudinal stresses applied for buckling control are calculated by dividing the still water bending moment plus wave bending moment with the section modulus of the hull girder. The section modulus shall be based on the reduced section modulus of the hull girder, normally not to be taken more than 90% of the as built section modulus in deck and bottom ($\sigma_{0.9} = M/ 0.9Z$).

However in case of low buckling capacity in deck or bottom, 95% of the as built section modulus may be used ($\sigma_{0.95} = M/ 0.95Z$).

Separate Panels

All separate panels within 0.15 D from the top or bottom (See Figure 3) should be checked, with a “separate panel” defined as a plate field with similar scantlings and spacing for all the plates and stiffeners included. E.g. the main deck between two main structural elements, such as the ship's side and the longitudinal bulkhead, could be defined as a separate panel.
If there are areas with different scantlings and/or spacing between two main structural elements, one should model each of the different areas as separate panels, but use an artificial panel breadth equal to the breadth of the whole plate field. E.g. if the main deck between the ship's side and the longitudinal bulkhead may be divided into two areas, A and B, with different thickness of the main deck plating, one should check one panel with the scantlings of area A and one with the scantlings of area B, where both panels checked should be given an artificial breadth equal to the total breadth of area A + B, i.e. the entire distance between the ship's side and the longitudinal bulkhead. See Figure 1.

![Figure 1 Consideration to different scantlings in calculation modelling](image)

Buckling control of transversally stiffened side

Vessels where the side is transversally stiffened within 0.15 D from deck or bottom should be modelled in PULS as follows:

\[
L_1 = \frac{\text{height from bottom/deck to the neutral axis or to the first deck or stringer level.}}{
S = \text{transverse stiffener spacing.}}
\]

The stress should be varied linearly from bottom/deck to neutral axis or to the first deck or stringer level.

Reduced Efficiency

Local panels e.g. part of the structure such as longitudinal girder, part of ship side /longitudinal bulkhead, top wing tank plating etc. with buckling capacity below requirement may be specially considered provided surrounding panels have sufficient strength to carry the additional load. This is not applicable for main strength deck panels or bottom shell panels.

The procedure is to reduce the efficiency of the panel to a factor equal to:
The procedure for how to do this depend on the tool used for the calculation. For the PULS tool:

\[
\frac{\sigma_{\text{ult}}}{\sigma_y}
\]

\(\sigma_{\text{ult}}\) is the maximum capacity of the (local) panel, found in "Detailed Results" in PULS.

The Section Scantling model is to be updated with the reduced efficiency and the new stress level is to be used in the buckling check of non-reduced elements.

The average, longitudinal stress acting on the panel shall be used. It is not necessary to include transverse in-plane stresses, shear stress or lateral loads.

4.1.3 Vessels with high double bottom stresses

Bulk carriers with class notations BC(A), BC(B) or BC(B*) (HC, HC(E) or HC(EA)), double hull tankers without a longitudinal bulkhead and gas carriers which in design are similar to ordinary single hull bulk carriers are ship types where double bottom stresses may be critical.

For such vessels where the bottom plating is built with increased thickness in middle of holds which are empty in alternative loading conditions, the following procedure should be applied:

The buckling analysis shall be carried out for the bottom panel between the hopper tank girder (margin girder) and the first double bottom girder inboard. The allowable reduction (in mm) found by this analysis shall be applied for the other bottom plates as well.

Figure 2 Procedure of critical ship types

If stiffener dimension or spacing between longitudinals varies, this will be subject to special consideration. For vessels where the bottom plating is not built with increased thickness in the middle of holds which are empty in alternative loading conditions, the allowable reduction for the bottom plating and stiffeners is maximum 10%.

For applying transverse stresses directly to the bottom panels, the local loads and load cases shall be based on the rules for newbuilding for the actual ship type.
4.1.4 Hull girder section modulus

In order to comply with global longitudinal strength requirements, the reduced section modulus of the vessel is normally not to be less than 90% of the required section modulus based on design bending moments.

In any case the reduced section modulus shall not be less than 90% of the minimum rule section modulus given in the DNV Rules Pt.3 Ch.1 Sec.5.

As a consequence of buckling criteria the allowable reduction of section modulus may be less than given above.

The actual reduced (as measured) hull girder section modulus of the vessel may be calculated directly or estimated as described in CG 0285 App.E "Calculation of average thickness reduction in deck and bottom. Verification of longitudinal strength". In the subject cross section of all structural elements contributing to longitudinal strength below 0.15 D or above 0.85 D should be included, see Figure 3.

![Figure 3 Structural elements contributing to longitudinal strength](image)

Table 2 Longitudinal strength members

<table>
<thead>
<tr>
<th>Structural component</th>
<th>Diminution coefficients "k"</th>
<th>Buckling control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength members within 0.15 D from deck and bottom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plating</td>
<td>0.80</td>
<td>Buckling control according to [4.1.2]</td>
</tr>
<tr>
<td>Stiffeners</td>
<td>0.75</td>
<td>Buckling control according to [4.1.2]</td>
</tr>
<tr>
<td>Girders and stringers (1)</td>
<td>0.80</td>
<td>Buckling control according to [4.1.2]</td>
</tr>
<tr>
<td>Side and longitudinal bulkhead between 0.15 D and 0.85 D from bottom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plating (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L < 150 m</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>L > 150 m</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>Stiffeners</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Other longitudinal structure between 0.15 D and 0.85 D from bottom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plating</td>
<td>0.80</td>
<td></td>
</tr>
</tbody>
</table>
Allowable thickness diminution for hull structure

Table 3 Transverse strength members

<table>
<thead>
<tr>
<th>Structural component</th>
<th>Diminution coefficients "k"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stiffeners</td>
<td>0.75</td>
</tr>
<tr>
<td>Girders and stringers</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Notes:

1) Bottom girders:
 - for single side skin bulk carriers with length \(L_{pp} > 150 \text{ m} \) carrying cargo with density of 1.78 \(t/m^3 \) or more, the shear strength of the girders in hold no.1 are additionally to be checked according to IACS UR S22, as applicable.

2) Side and longitudinal bulkhead:
 - for corrugated bulkheads see Table 3 "Transverse bulkheads".

Table 3 Transverse strength members

<table>
<thead>
<tr>
<th>Structural component</th>
<th>Diminution coefficients "k"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deck plating between hatches</td>
<td></td>
</tr>
<tr>
<td>1) Plate</td>
<td>0.80 ¹)</td>
</tr>
<tr>
<td>2) Stiffener</td>
<td>0.75</td>
</tr>
<tr>
<td>Transverse bulkhead ²)</td>
<td></td>
</tr>
<tr>
<td>3) Plain bulkhead</td>
<td>0.75 ⁴)</td>
</tr>
<tr>
<td>4) Corrugated bulkheads</td>
<td></td>
</tr>
<tr>
<td>5) Flange</td>
<td>0.80</td>
</tr>
<tr>
<td>6) Web</td>
<td></td>
</tr>
<tr>
<td>Frames/Stiffeners</td>
<td></td>
</tr>
<tr>
<td>7) Web</td>
<td>0.75</td>
</tr>
<tr>
<td>8) Flange</td>
<td>0.75</td>
</tr>
<tr>
<td>Web frames/floors ³)/girders and</td>
<td></td>
</tr>
<tr>
<td>stringers</td>
<td>0.80</td>
</tr>
<tr>
<td>9) Web</td>
<td></td>
</tr>
<tr>
<td>10) Flange</td>
<td>0.75</td>
</tr>
<tr>
<td>Side frames in way of wing tank for</td>
<td></td>
</tr>
<tr>
<td>container ships</td>
<td></td>
</tr>
<tr>
<td>11) Upper part - the web frame plating</td>
<td>0.7</td>
</tr>
<tr>
<td>above first stringer from second deck</td>
<td></td>
</tr>
<tr>
<td>12) Lower part - the web frame plating</td>
<td>0.8</td>
</tr>
<tr>
<td>below first stringer from second deck</td>
<td></td>
</tr>
<tr>
<td>13) Cross ties</td>
<td>0.85</td>
</tr>
<tr>
<td>14) Hatch covers ⁵)/coamings</td>
<td></td>
</tr>
<tr>
<td>15) Plate</td>
<td>0.80</td>
</tr>
<tr>
<td>16) Stiffener</td>
<td>0.75</td>
</tr>
</tbody>
</table>
Structural component
<table>
<thead>
<tr>
<th>Diminution coefficients “k”</th>
</tr>
</thead>
</table>

Notes:
1) To be especially considered if cross deck stiffened in longitudinal direction in way of vertically corrugated, transverse bulkhead.
2) For single side skin bulk carriers with length Lpp > 150 m carrying cargo with density of 1.78 t/m³ or more, vertically corrugated transverse bulkhead between forward holds no.1 and 2 is to satisfy flooding requirements according to IACS UR S19, as applicable.
3) For single skin bulk carriers with length Lpp > 150 m carrying cargo with density of 1.78 t/m³ or more, the shear strength of the floors in hold no.1 is additionally to be checked according to IACS UR S22, as applicable.
4) Bulkheads designed with two plate flanges connected with vertical webs (“double skin bulkheads”) should have a diminution coefficient, $k = 0.80$.
5) Ref. IACS UR S21 for allowable corrosion margins (net scantlings) for all ships contracted for construction on or after 1st July 2012 except bulk carriers, ore carriers and combination carriers as defined in IACS UR Z11.

4.2 Structure outside 0.4 L amidship

4.2.1 Transverse strength elements
Minimum thickness calculations of transverse strength members are in general to follow the procedures of [4.1].

4.2.2 Longitudinal strength elements
The direct strength criteria given in [4.1] apply. Optionally the simplified method given below may be used:

Deck and bottom plating within 0.15 D:
Minimum thickness 0.1 L from perpendiculars is:

$$t_{\text{min}} = k \ t_{\text{orig}}$$

with

$$k = 0.80$$

Linear interpolation should be applied between 0.4 L midship area and 0.1 L from perpendiculars.

Deck and bottom longitudinals within 0.15D:

The minimum thickness 0.1 L, from the perpendicular, is decided as for deck and bottom plates, but with $k = 0.75$.
Where plates are given less than 20% and longitudinals are given less than 25% thickness reduction in the midship area due to buckling, a linear interpolation should be used for the margins between 0.4 L from midship and 0.1 L from the perpendiculars.

Side and longitudinal bulkhead plating:

The minimum thickness shall be based on the procedure given in [4.1].

Side and bulkhead longitudinals and girders:

The minimum thickness shall be based on the procedure given in [4.1].

5 Refined minimum thickness calculations

If it is found necessary to obtain more accurate and specific values for the minimum thickness than offered by [3] and [4], then the method described in this chapter may be used.

5.1

For any hull structure member, the minimum thickness may be found from direct calculation according to the latest rule edition. The Society may specially consider the application of other relevant criteria on a case by case basis, for example, based on relevant operational conditions etc.

5.2

The Society may offer a special service concerning detailed assessment and re-calculation of certain structural elements in order to find the absolute minimum thickness based on the actual condition. Such calculations will normally require detailed and advanced calculation models, and fees for this service may be agreed separately with the Society, based on the scope of work. Detailed thickness measurements will normally be required in order to verify the actual thickness of the corroded structure.

Reference is made to DNVGL CG 0137 for further information on calculation procedures.

6 Repair

Reference is made to the IACS **Rec. no.47 Shipbuilding and Repair Quality Standard, Part B, and App.A** concerning voyage repairs.

Details of hull repairs including procedures shall be agreed with the Society prior to commencement of the repair.

Areas found with diminution in excess of acceptable limits are normally to be repaired with inserted material of same grade and scantlings as original. Alternative dimensions materials and repair methods may, however, be accepted provided they are specially considered and approved, typically in connection with refined minimum thickness calculations.

Where inserts are arranged the remaining thickness of existing areas, adjacent to replacement material, should normally be at least 1 mm in excess of the minimum thickness.
SECTION 4 ALLOWABLE MATERIAL DIMINUTION FOR GENERAL CORROSION, CLASS 100A5

1 Corrosion and wear tolerances

Where thickness measurements according to the GL rules for ships (requirements for maintaining class) result in corrosion and wear values exceeding those stated in the following, the respective hull structural elements will have to be renewed.

The Society reserves the right where applicable to modify the indicated values according to [1.2] and Sec.5 [2] referring to the maximum permissible large-surface corrosion allowances.

When reduced material thickness has been accepted for the new building (effective system of corrosion prevention), the permissible corrosion allowances shall be based on the unreduced rule thickness.

1.1 Longitudinal strength

Maximum permissible reduction of midship section modulus: 10%.

1.2 General corrosion for local strength

t_k: maximum permissible large-surface reduction of plate thickness and web thickness of profiles:

- $t_k = 1.5 \text{mm for } t \leq 11.5 \text{ mm}$
- $t_k = 0.09 t + 0.45 \text{ mm, max 3.0 mm for } t > 11.5 \text{ mm}$

t: plate and/or web thickness in [mm], as stipulated in GL construction rules

- In ballast tanks in way of 1.5 m below the weather deck, if the weather deck is the tank deck: $t_k = 2.5 \text{ mm}$
- In cargo oil tanks in way of 1.5 m below the weather deck, if the weather deck is the tank deck, and for horizontal structural elements in cargo oil and fuel tanks: 2.0 mm
- In dry cells, such as fore-to-aft passageways of container ships and comparable spaces:
 - $t_k = 1.0 \text{ mm for } t \leq 11.5 \text{ mm}$
 - $t_k = 0.09 t$, max 2.5 mm for $t > 11.5 \text{ mm}$

For hatch covers of dry cargo holds:

- $t_k = 1.0 \text{ mm}$

Maximum permissible surface reduction of the side shell in way of the ice belt:

- 2.0 mm

1.3 Hatch covers

For single skin hatch covers and for the plating of double skin hatch covers, steel renewal is required where the gauged thickness is less than $t_{net} + 0.5 \text{ mm}$. Where the gauged thickness is within the range $t_{net} + 0.5 \text{ mm}$ and $t_{net} + 1.0 \text{ mm}$, coating (applied in accordance with the coating manufacturer’s requirements) or annual gauging may be adopted as an alternative to steel renewal. Coating shall be maintained in GOOD condition, as defined in UR Z10.2.1.2.

For the internal structure of double skin hatch covers, thickness gauging is required when hatch cover top or bottom plating renewal shall be carried out or when this is deemed necessary, at the discretion of the surveyor, on the basis of the plating corrosion or deformation condition. In these cases, steel renewal for the internal structures is required where the gauged thickness is less than t_{net}.

For corrosion addition $t_k = 1.0 \text{ mm}$ the thickness for steel renewal is t_{net}, and the thickness for coating or annual gauging is when gauged thickness is between t_{net} and $t_{net} + 0.5 \text{ mm}$.

1.4 Anchor equipment

Maximum permissible reduction of the mean diameter of chain links: 12%
Maximum permissible reduction in weight of anchors: 10%
SECTION 5 ALLOWABLE MATERIAL DIMINUTION FOR GENERAL CORROSION, CLASS 1A CONTAINER SHIPS

1 Corrosion and wear tolerances

This section provides allowable corrosion margins in accordance with the net scantlings approach implemented by IACS in UR S11A (June 2015).

The renewal criteria may be specially considered provided it’s demonstrated that the hull girder strength requirements in UR S11A are complied with.

1.1 Longitudinal strength

The hull girder section modulus shall not be reduced beyond \(Z_{\text{net50}}\) applied for scantling control during newbuilding.

1.2 General corrosion for local strength

The total corrosion margin, \(t_c\), in mm, for both sides of the structural member is obtained by the following formula:

\[
t_c = (t_{c1} + t_{c2}) + t_{res}
\]

Where \(t_{c1}\) and \(t_{c2}\) are specified in Table 1.

For an internal member within a given compartment, the total corrosion addition, \(t_c\) is obtained from the following formula:

\[
t_c = (2t_{c1}) + t_{res}
\]

The corrosion addition of a stiffener is to be determined according to the location of its connection to the attached plating.

Table 1 Corrosion addition for one side of a structural member

<table>
<thead>
<tr>
<th>Compartment type</th>
<th>One side corrosion addition (t_{c1}) or (t_{c2}) [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed to sea water</td>
<td>1.0</td>
</tr>
<tr>
<td>Exposed to atmosphere</td>
<td>1.0</td>
</tr>
<tr>
<td>Ballast water tank</td>
<td>1.0</td>
</tr>
<tr>
<td>Void and dry spaces</td>
<td>0.5</td>
</tr>
<tr>
<td>Fresh water, fuel oil and lube oil tank</td>
<td>0.5</td>
</tr>
<tr>
<td>Accommodation spaces</td>
<td>0.0</td>
</tr>
<tr>
<td>Container holds</td>
<td>1.0</td>
</tr>
<tr>
<td>Compartment types not mentioned above</td>
<td>0.5</td>
</tr>
</tbody>
</table>

1.3 Hatch covers

See Sec.4 [1.3].
1.4 Anchor equipment

See Sec.4 [1.4].
SECTION 6 HIGH SPEED CRAFT

For high speed crafts with class notations **HSC-PASSENGER A**, **HSC PASSENGER B**, **HSC-CARGO** or **HSDE** as defined in **GL rules for high speed craft (I-3-1)**, and HSLC vessels as defined in **DNV rules for vessels (ACV, HYD, SES, CAT, MONO and WP)**, and 1A HSLC vessels, following corrosion and wear tolerances apply for steel and aluminium alloys.

1 Longitudinal strength

Maximum permissible reduction of midship section modulus: 10%

2 Local strength

Where applicable, the maximum permissible large-surface reduction t_k of plate thickness and web thickness of profiles is:

- $t_k = 0.5 \text{ mm}$ for $t \leq 10.5 \text{ mm}$
- $t_k = 0.03 t + 0.2 \text{ mm}$, max 1.0 mm for $t > 10.5 \text{ mm}$

For tank bottoms:

- $t_k = 1.0 \text{ mm}$

Maximum permissible locally limited reduction of thickness: 0.1 t

Corrosion reduction t_k can be assumed as 0.0 mm for steel and aluminium alloys if the measures for corrosion prevention at the construction stage are fully applied and maintained according to a document available on board and specifying all these arrangements include maintenance procedures.

3 Anchor chain cables

For anchor chain cable the maximum permissible reduction of the mean diameter of chain link is 10%.
SECTION 7 PITTING, GROOVE AND EDGE CORROSION

1 Pitting

1.1 Assumptions

The following assumptions apply:

— pitting repair by plastic compound filler material is only considered as a method to prevent further corrosion and does not contribute to the strength.
— hard coatings are normally to be applied after repair.

1.2 Minimum acceptable remaining thickness without repair

a) For plates with pitting intensity less than 20%, the minimum remaining thickness in pitting shall be at least:

\[t_{\text{min}} = 0.6 \ t_{\text{orig}} \]

but, not less than 6 mm.

b) For plates with “100% pitting intensity” (i.e. general corrosion) the average remaining thickness, in the worst cross section through the pitting in a plate field should not be less than minimum thickness for general corrosion given in 3, 4 or 5.

c) For intermediate pitting intensities, acceptance of average remaining thickness may be decided based on linear interpolation between a) and b) above.

1.3 Average remaining thickness for pitted areas

As a rough guide for estimating the average remaining thickness for pitted areas the following may be applied:

\[t_{\text{act}} = t_{\text{plate}} \cdot (1 - \text{Int}/100) + t_{\text{pit}} \cdot \text{Int}/100 \]

- \(t_{\text{act}} \) = corrected average remaining thickness
- \(t_{\text{plate}} \) = average remaining thickness outside pitting
- \(t_{\text{pit}} \) = average remaining thickness in pitting
- \(\text{Int} \) = estimated pitting intensity in %

Further, in order to assist in the assessment of estimated pitting intensity, see Figure 1.

1.4 Repair

a) For widely scattered pitting, i.e. intensity < 5%, and where the remaining thickness in pitting is not less than 6 mm, the following may apply:

i) The use of filler material/plastic compound of a suitable elastic type according to the manufacturer’s instructions may be acceptable provided:

— pitting to be thoroughly cleaned (sand/grit blasted) and dried prior to application
— pitting to be completely filled
— a top layer of coating to be applied.

ii) Welding, may be carried out afloat, in accordance with the following:

— pitting shall be thoroughly cleaned, ground and dried prior to welding
— low hydrogen electrodes approved for the material in question shall be used. Weld to start outside pitting and direction reversed for each layer.

b) For high intensity pitting and/or where the remaining thickness is below the acceptable limits plates/stiffeners shall be renewed by inserts.

![Pitting Intensity Diagrams]

Figure 1 Pitting intensity

2 Groove and edge corrosion

2.1 General

Groove corrosion normally takes place adjacent to welds and is of particular concern for the connection of side frames to shell plate in single skin bulk carriers. However, grooving may be a problem for various ship types. Other commonly affected areas are:

— web frame connections to deck/stiffeners (ballast tanks)
— webs of side/deck longitudinals (ballast tanks)
— external shell plates in the forward part of the vessel.

Edge corrosion is mainly found around cutouts in web structures and at the free edges of flat bar deck longitudinals.

2.2 Assumptions

The following assumptions apply:
— grooves and edges are smooth and without sharp edges or notches
— welding is intact and with acceptable remaining throat thickness
— “accumulated transverse grooves” means the total length of all grooves at each structural member in deck, bottom, longitudinal bulkhead or side plating within the cargo area of the ship.

Limits are given in below paragraphs.

2.3 Groove corrosion of internal structures

The maximum extent of grooving and the acceptable minimum thickness of stiffeners and plates may be taken as follows:
Where the groove breadth is a maximum of 15% of the web height, but not more than 100 mm, the remaining allowable thickness in the grooved area may be taken as, see Figure 2:

\[t_{\text{min}} = 0.7 \cdot t_{\text{orig}} \]
\[t_{\text{min}} = 0.75 \cdot t_{\text{orig}} \text{ for L-profiles,} \]
but not less than 6.0 mm.

![Figure 2 Groove corrosion](image)

Accumulated transverse grooves in deck, bottom, longitudinal bulkhead or side plating within the cargo area is normally limited to 20% of the breadth respective height of the ship. For ships with large deck openings, such as container ships, the accumulated length of transverse grooves in the passageway is normally limited to 10% of the breadth.

2.4 Corroded welded seams in shell plating

Minimum thickness at the weld or plate:

\[t_{\text{min}} = 0.7 \cdot t_{\text{orig}} \]
Accumulated transverse grooves in bottom and side plating within the cargo area is normally limited to 20% of the breadth respective height of the ship.

2.5 Edge corrosion

2.5.1 Flat bar deck longitudinals
For acceptable extent of corrosion of the free edge of the longitudinals the following may be applied:

a) the overall height of the corroded part of the edge is less than 25% of the stiffener web height
b) the edge thickness is not less than 1/3 t_{orig} and well rounded
c) the thickness of the remaining part of the longitudinal is above the minimum allowable as per Sec.1 (i.e. Sec.3, Sec.4 or Sec.5).

![Figure 3 Extent of free edge corrosion](image)

2.5.2 Manholes, lightening holes, etc.
Plate edges at openings for manholes, lightening holes, etc. may be reduced below the minimum thickness as described below:

a) The maximum extent of the reduced plate thickness, below the minimum given in Sec.3, Sec.4 or Sec.5 as applicable, from the opening edge shall not be more than 20% of the smallest dimension of the opening but should not exceed 100 mm, see Figure 4.
b) Rough or uneven edges may be cropped-back provided the maximum dimension of the opening is not increased by more than 10%. Special care shall be taken in areas with high shear stresses, including areas with adjacent cut-outs.

2.6 Repair
Where excessive edge corrosion is found, renewal by inserts will normally be required. However, alternative repairs may be considered as follows:

a) Edges of openings maybe reinforced by:
 i) compensation reinforcement ring with lap joint
 ii) additional flanges
 iii) possible closing of openings by collar plates around stiffener and at corner cutouts adjacent to the affected areas to be considered.
b) Re-welding of grooves and corroded butts or seams:
 i) the surfaces shall be cleaned, ground and dried before welding
 ii) low hydrogen electrodes to be used.
Figure 4 Extent of corrosion in way of manholes etc.
SECTION 8 REFERENCES

1 References

a) Tanker Structure Co-operative Forum:
 — Guidance Manual for Tanker Structures

b) IACS Publications:
 — Bulk Carriers, Guidelines for Surveys, Assessment and Repair of Hull Structure
 — Shipbuilding and Repair Quality Standard, Part B Repair Quality Standard for Existing Ships
 — General Cargo ships, Guidelines for Surveys, Assessment and Repair of Hull Structure.

c) DNV GL class guidelines:
 — CG-0288, Non-metallic materials - Corrosion Protection of Ships
 — CG-0285, Ultrasonic Thickness Measurement of Ships
 — CG-0056, Strength analysis of hull structures in bulk carriers
 — CG-0057, Strength analysis of hull structures in tankers.

d) DNV GL rules for classification of ships.
APPENDIX A GUIDELINES FOR THE SURVEY OF VOYAGE REPAIRS

1 General

The purpose of this appendix is to provide guidance to the field surveyors and owners dealing with voyage hull repairs and shall be considered in addition to the rules.

1.1 Initial meeting

A meeting shall be held with the surveyor and owner prior to commencement of hull repairs during a vessel’s voyage to discuss and confirm the following:

a) it is the owner’s responsibility to ensure continued effectiveness of the structure, including the longitudinal strength and the watertight/weathertight integrity of the vessel
b) extent of intended repairs. All repairs shall be based on the Society’s recommendations and/or concurrence
c) availability of pertinent drawings
d) verification of new materials regarding certification, grade and scantlings. Verified mill sheets to remain on board and to be provided to attending surveyor examining completed repairs
e) verification of welding consumables regarding certification and suitability for materials involved. Check on availability of drying ovens, holding containers, etc.
f) verification of the qualification of welders and supervisory personnel, qualification records to remain on board and to be provided to attending surveyor examining completed repairs
g) review of intended repair
h) review of the intended provisions to facilitate sound weldments, i.e. cleaning, preheating (if applicable) adherence to welding sequence principles. Further, it might be necessary to restrict welding to certain positions and prohibit welding in more difficult positions when the ship’s motions might influence the quality of the welding
i) review of intended working conditions, i.e. staging, lighting, ventilation, etc.
j) review of intended supervision and quality control
k) completed repairs shall be examined and tested as required to the satisfaction of the attending surveyor.

Guidance note:
All details and results of subject meeting to be covered by a memorandum. A copy of this memorandum shall be placed on board and to be provided to the attending surveyor examining the repairs. In addition, a copy shall be sent or faxed to the arrival port where completed repairs will be examined.

---e-n-d---o-f---g-u-i-d-a-n-c-e---n-o-t-e---

1.2 Contemplated repairs

Descriptions of any contemplated repairs to primary hull structures, i.e. main longitudinal and transverse members and their attachments, shall be submitted to the Society for review prior to commencing voyage repairs. Any repairs to primary hull structures shall require attendance by a surveyor riding-ship survey or at regular intervals to confirm fit-up, alignment, general workmanship and compliance with recommendations. NDT of completed repairs to primary structure to be carried out to attending surveyor’s satisfaction. Repairs to other hull structural parts may be accepted based on examination upon completion of repairs.

1.3 Prerequisites for repairs

No hull repairs carried out by a riding crew will be accepted unless:

a) the initial meeting had been carried out and conditions found satisfactory
b) a final satisfactory examination upon completion was carried out.
APPENDIX B COMMON STRUCTURAL RULES VESSELS

1 General

Common Structural Rules (CSR) incorporates bulk carriers and oil tankers. See IACS Common Structural Rules for Bulk Carriers and Oil Tankers
— common structural rules for bulk carriers and oil tankers.

CSR vessels are built with the common structural rules “net scantling” approach. The newbuilding requirements within the rules incorporate defined corrosion additions. The minimum thickness together with possible “owners extra”, “voluntary addition”, or similar is stated on the approved drawings from designer or new building yard.

In case documents/drawings with information of minimum thickness are not available then the below references may be used. For CSR vessels the “substantial corrosion” limit is equivalent to “annual inspection limit”. In case there is any discrepancy between the respective rules and this class guideline, then the rules prevail.

2 CSR-rules corrosion acceptance criteria and limits

See IACS Common structural rules Pt.1 Ch.13 Ship in operation - renewal criteria.

2.1 Minimum thickness for renewal

\[t_{ren} = t_{as-built} - t_c - t_{vol add} \]

where:

\[t_{as-built} \] = as built thickness of the member, in mm
\[t_c \] = corrosion addition, in mm, defined IACS Common structural rules Pt.1 Ch.3 Sec.3 Table 1
\[t_{vol add} \] = owner/builder specified additional wastage allowance, if applicable, in mm
\[t_{res} \] = 0.5 mm, wastage allowance in reserve for corrosion occurring in the two and a half years between intermediate and special surveys

If the corrosion is extensive then global strength as per IACS Common structural rules Pt.1 Ch.13 Sec.2 [2.2] shall be evaluated.

In case of repair the renewed area is in general to be inserted with material which has the same or greater grade and yield stress as the original, and shall have thickness \(t_{repair} \) not less than \(t_{repair} = t_{as-built} - t_{vol add} \).

2.2 Minimum thickness for annual inspection

When the measured thickness at intermediate survey (IS) or renewal class hull (RCH) is such that the remaining margin is less than \(t_{res} \) then annual survey (AS) is required. The procedures are similar to the procedures used for other vessel designs in connection with substantial corrosion.
CHANGES – HISTORIC

There are currently no historical changes for this document.
Driven by our purpose of safeguarding life, property and the environment, DNV GL enables organizations to advance the safety and sustainability of their business. We provide classification and technical assurance along with software and independent expert advisory services to the maritime, oil and gas, and energy industries. We also provide certification services to customers across a wide range of industries. Operating in more than 100 countries, our 16 000 professionals are dedicated to helping our customers make the world safer, smarter and greener.