CLASS GUIDELINE

DNVGL-CG-0128

Buckling
FOREWORD

DNV GL class guidelines contain methods, technical requirements, principles and acceptance criteria related to classed objects as referred to from the rules.

© DNV GL AS

Any comments may be sent by e-mail to rules@dnvgl.com

If any person suffers loss or damage which is proved to have been caused by any negligent act or omission of DNV GL, then DNV GL shall pay compensation to such person for his proved direct loss or damage. However, the compensation shall not exceed an amount equal to ten times the fee charged for the service in question, provided that the maximum compensation shall never exceed USD 2 million.

In this provision "DNV GL" shall mean DNV GL AS, its direct and indirect owners as well as all its affiliates, subsidiaries, directors, officers, employees, agents and any other acting on behalf of DNV GL.
This is a new document.
CONTENTS

Changes – current...3

Section 1 Introduction..7
 1 Objective...7
 2 Buckling methods..7
 3 Assumptions – limitations...8
 4 Buckling checks flow chart – link to rules..8

Section 2 Ultimate strength - principles..10
 1 Objectives...10
 2 General principles..10
 2.1 Ultimate strength – plastic buckling..10
 2.2 Elastic buckling and postbuckling...11
 2.3 Usage factor definitions...13
 2.4 Acceptance levels – safety formats...15

Section 3 Closed form method (CFM) - Buckling capacity..17
 1 General..19
 1.1 Scope...19
 2 Plate and stiffeners..19
 2.1 Overall stiffened panel capacity..19
 2.2 Plate capacity...20
 2.3 Stiffeners...37
 2.4 Primary supporting members...45
 3 Corrugated bulkhead..47
 4 Struts, pillars and cross ties...48
 4.1 Buckling utilisation factor...48
 4.2 Elastic column buckling stress...48
 4.3 Elastic torsional buckling stress...49
 4.4 Elastic torsional/column buckling stress..50
 5 Bars and framework..54
 5.1 Introduction...54
 5.2 Buckling utilisation factor...56
 5.3 Characteristic buckling resistance..56
 5.4 Non-dimensional buckling curves...56
 5.5 Members exposed to pure axial compression (columns)...59
5.6 Members exposed to pure bending (beam) .. 59
5.7 Members exposed to axial load and bending (beam-columns) 60
5.8 Overall buckling of built-up members .. 61

6 Spherical Shells ... 65
 6.1 Introduction .. 65
 6.2 Stresses .. 65
 6.3 Shell buckling, general ... 66
 6.4 Buckling of dished ends convex to pressure 68

Section 4 Semi-analytical buckling models (PULS) .. 69
 1 General .. 69
 2 Objective ... 69
 3 Theory fundamentals .. 69
 3.1 General .. 69
 3.2 Basic theory .. 70
 3.3 Load history .. 73
 3.4 Margins to collapse - usage factor ... 74

4 Elements and their validity .. 77
 4.1 General .. 77
 4.2 Unstiffened regular plate; U3 ... 77
 4.3 Uni-axially or orthogonally stiffened regular plate; S3 78
 4.4 Non-regular stiffened plate; T1 .. 79
 4.5 Open corrugated trapezoidal panel; K3 ... 80
 4.6 FRP Composite plate buckling element – C1 80

5 Acceptance criteria ... 81

Section 5 Ultimate Hull girder capacity ... 82
 1 General .. 82
 2 Objective ... 82
 3 Scope .. 82
 4 Methods .. 83
 5 Design safety formats ... 83

6 Simple models .. 83
 6.1 General .. 83
 6.2 Multi-step method ... 83
 6.3 Single-step ... 85

7 Direct approach; non-linear FE .. 87

Section 6 Structural Capacity Using Non-Linear FE 88
SECTION 1 INTRODUCTION

1 Objective
The present guideline gives methods and principles applicable for the assessment of buckling and ultimate strength limits (ULS) of load carrying members as used in steel ship hulls or similar plated constructions. The Class Guidelines application is based on relevant Rules for Classification of Ships. The purpose of buckling and ultimate strength criteria are to ensure robust design and controlled behaviour of structures subjected to loads as defined in the rules.

2 Buckling methods
Several sets of buckling and ultimate strength methodologies are given
— Closed Form Method (CFM) (Sec.3)
— Flat stiffened and unstiffened plates; semi-analytical/numerical method PULS (Sec.4)
— Special shell structures (Sec.3 [6]).

Guidance note:
The Closed Form Method (CFM) is based on semi-empirical formulations. The criteria are given as Closed Cell Formulas (CCF).
The PULS code is based on semi-analytical formulations applying a direct approach for assessing the buckling and ultimate strength limits. A direct approach means here that the (equilibrium) equations describing the physical problem are established and a numerical strategy is used for solving them.
The Closed Form Method (CFM) CSR-H and PULS code are partly supplementary. Both codes cover uni-axially stiffened and unstiffened plate, while the Closed Form Method (CFM) also cover pillars, beams, cross-ties, web plates with cut-outs and curved shells. PULS covers orthogonally stiffened plates, irregular stiffened plates and corrugated panels.
The present guideline covers mainly ship shaped structures. Other structural configurations like frames and special shells are also partly covered according to Table 1.

Table 1 Structural configuration and buckling method

<table>
<thead>
<tr>
<th>STRUCTURAL CONFIGURATION</th>
<th>METHOD REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFM</td>
<td>PULS element/other</td>
</tr>
<tr>
<td>PLATES</td>
<td></td>
</tr>
<tr>
<td>Unstiffened panels (e.g. between stiffeners)</td>
<td>Sec.3 [2.2]</td>
</tr>
<tr>
<td>Stiffened panels/bottom/deck/ship side/BHD</td>
<td>Sec.3 [2.1]/Sec.3 [2.3]</td>
</tr>
<tr>
<td>Girder web plating/floors/stools</td>
<td>Sec.3 [2.4]</td>
</tr>
<tr>
<td>Girder web plating with cut-outs</td>
<td>Sec.3 [2.4.2]</td>
</tr>
<tr>
<td>Diaphragms/cofferdams</td>
<td>Sec.3 [2.2]</td>
</tr>
<tr>
<td>Corrugated bulkheads/panels</td>
<td>Sec.3 [3]</td>
</tr>
<tr>
<td>SPS sandwich plating</td>
<td>DNVGL-CG-0154</td>
</tr>
<tr>
<td>Composites FRP/GRP plating</td>
<td>PULS Excel FRP</td>
</tr>
<tr>
<td>STRUTS, PILLARS AND CROSS TIES</td>
<td>Sec.3 [5]</td>
</tr>
<tr>
<td>BARS AND FRAME STRUCTURES</td>
<td>Sec.3 [5]</td>
</tr>
</tbody>
</table>
A brief description of main features behind the Ultimate Strength Principles in relation to more design and strength assessments of ship structures is given in Sec.2.

A description of methods and principles using non-linear FEM codes (NLFM) for assessing capacity limits and permanent sets of structures is given in Sec.6.

A general description of hull girder capacity models are given in Sec.5.

3 Assumptions – limitations

The buckling models and general descriptions of methods etc. in the present guideline assume the standard quasi-static formulations, i.e. dynamic load effects are not considered influencing the ultimate capacity. This is a conservative assumption and applies to most normal environmental design loads such as waves, wind and current.

For ship hull components the ultimate load capacity are to be measured against an extreme load representative for the most probable load over the defined rule lifetime of the vessel (most probable over 25 years in North-Atlantic, probability of 10^{-8}).

4 Buckling checks flow chart – link to rules

The rule RU SHIP Pt.3 Ch.8 Buckling and RU SHIP Pt.3 Ch.5 Hull Girder strength and their link to the present CG are illustrated in flow chart, Figure 1, with a short description on what type of buckling criteria and cases the different rule sections covers.

Buckling strength criteria at four levels are to be complied with (Figure 1) in addition the stress independent slenderness requirements (RU SHIP Pt.3 Ch.8 Sec.2)

1) Prescriptive buckling requirements (RU SHIP Pt.3 Ch.8 Sec.3): Local strength of plates and stiffeners subjected to hull girder stresses, i.e. local “panel by panel” checks across hull section.

 Guidance note:
 The longitudinal strength check applies nominal stresses and is based on nominal hull girder neutral axis.
 Net scantlings: The cross-section properties/nominal stress is based on 50% t subtracted and the buckling capacity is based on net scantlings (i.e. 100% t subtracted)

 ---e-n-d---of---g-u-i-d-a-n-c-e---n-o-t-e---

2) Hull Girder Strength (RU SHIP Pt.3 Ch.8).

 Sec.1 Hull Girder Yielding Strength

 Guidance note:
 Global stress check due to vertical and horizontal bending, torsion and shear.

 ---e-n-d---of---g-u-i-d-a-n-c-e---n-o-t-e---

 Sec.2 Hull Girder Ultimate Strength (HGUS)

 Guidance note:
 Ultimate moment capacity ($Md < Mu$) check based summing ultimate capacity all individual elements covering stress redistributions in hull section due to local element buckling and shift in hull section neutral axis. (Single and Multi-step/Smith Mu models).

 ---e-n-d---of---g-u-i-d-a-n-c-e---n-o-t-e---

3) Partial Ship Structural Analysis (RU SHIP Pt.3 Ch.8 Sec.4; DNVGL-CG-0127 *Finite element analysis*);
Cargo Hold analyses by linear FEM. Local buckling checks of stiffeners and plates “panel by panel” subjected to rule hull girder global loads, local cargo loads and lateral sea pressure

Guidance note:
Net scantlings: The buckling capacity is based on net scantlings (i.e. 100% t subtracted)

---e-n-d---o-f---g-u-i-d-a-n-c-e---n-o-t-e---

4) Global Strength Analysis (RU SHIP Pt.3 Ch.8 Sec.4; DNVGL-CG-0127 Finite element analysis);
Full ship global strength analyses by linear FEM. Local buckling checks of stiffeners and plates "panel by panel" subjected to rule global loads, local cargo loads and sea pressures

Guidance note:
Net scantlings: The buckling capacity is based on net scantlings (i.e. 100% t subtracted)

---e-n-d---o-f---g-u-i-d-a-n-c-e---n-o-t-e---

Figure 1 Rule sections on buckling and their links to present class guideline
SECTION 2 ULTIMATE STRENGTH - PRINCIPLES

1 Objectives

The purpose of applying Ultimate Limit State (ULS) principles in design is to ensure the ship to behave in a controlled manner when subjected to rule design loads and that no structural collapse will occur. The objective is also to ensure that localized plastic collapse will not take place during the extreme events even though such may not threaten the overall safety and not lead to total collapse of the ship.

2 General principles

2.1 Ultimate strength – plastic buckling

Hull stresses exceeding the ultimate capacity limit of individual structural elements is not accepted as it may lead to major (significant) damages in the form of localized plastic buckles/permanent sets (Figure 1).

Figure 1 Illustrations of local structural collapse/plastic buckling/permanent sets/damages in ship structures

Guidance note:
Marginal and rather localized plastic straining (e.g. plate surface yielding, hot spot straining etc) will occur at extreme loads and are usually accepted.

The ultimate capacity limit used meant to represent characteristic lower bound strength, i.e. it is assumed that the probability of exceedance is in the range of 90% or higher.

Guidance note:
The lower bound strength reflects uncertainties in main parameters such as buckling model approximations, imperfection sensitivity, out-of-flatness as well as material and welding/residual stress characteristics.

---e-n-d---of---g-u-i-d-a-n-c-e---n-o-t-e---
2.2 Elastic buckling and postbuckling

Elastic buckling limits of structures may be considered a critical limit states depending on the type of structure.

In general elastic buckling of local plate elements in ship structures is not critical due to their redundancy characteristics. Thus large (elastic) deflections are accepted as long as it is ensured that the structure behaves in a controlled manner and its functional and operational requirements are not jeopardized.

Guidance note:
Elastic buckling of plates which are properly supported around the edges display positive post buckling characteristics and loads beyond the eigenvalue can be carried. Thus elastic plate buckling is not a failure mode as such and is acceptable as long as it is ensured the load shedding and stress-redistributions are coped with.

Plates compressed beyond the elastic buckling limit and into the post-buckling range will lose membrane stiffness and the structure will be more flexible than assumed using standard linear methods (reduced "E" modules and Poisson ratio/anisotropic stiffness). The reduced flexibility in highly compressed areas will lead to load shedding at both a local and overall level.

For shell structures of e.g. spherical or cylindrical shapes (LNG tanks), the classical elastic buckling load (eigenvalue) is an upper load limit the shell can carry. That is different from the buckling behaviour of flat plates and implies that elastic buckling is not accepted as it represents the maximum load limit slender structures can carry.

Guidance note:
Elastic buckling of shells will normally show a degree of unstable behaviour with a negative post-buckling characteristic. This means that in particular slender non-perfect shells will display imperfection sensitivity and buckle elastically at a significantly lower load than corresponding to the eigenvalue.

An example of such behaviour for a toro-spherical shell tank end-closure (LNG tank) is shown in App.B.

Elastic buckling is a state at which the structure loses its stability and large elastic deflections will start developing rapidly. It is normally associated with the minimum eigenvalue of the perfect structure, i.e. often referred to as classical buckling.

The classical elastic buckling limit may be stable, unstable or neutral with associated load bearing and imperfection sensitivity characteristics as illustrated schematically in Figure 2.

Guidance note:
A stable elastic buckling limit is characterized by a positive post-buckling region, i.e. the structure can carry significantly higher loads than the eigenvalue though at large deflections (e.g. flat plates).

An unstable elastic buckling limit is characterized by a negative post-buckling region, i.e. the load bearing capacity drops below the eigenvalue and deflections grows violently (e.g. cylindrical and spherical shells).

A neutral elastic buckling limit is characterized by a neutral post-buckling region, i.e. the load bearing capacity is neither increasing nor dropping, but stays at the eigenvalue and the deflections grows at an infinitely rate (e.g. pillars, columns and beam-columns).
In relation to buckling it is convenient to define a slenderness parameter λ;

$$\lambda = \sqrt{\frac{\text{yield}}{\text{elastic buckling}}}$$

A classification of slenderness ranges are:

- Slender structures \(\lambda > 1.4 \)
- Moderate slender structures \(0.6 < \lambda < 1.4 \)
- Stocky structures \(0.6 > \lambda \)

Guidance note:

The slenderness parameter in the present lambda format is useful as a reference parameter for all type of structures. It gives a measure of the failure being dominant by buckling effects (slender structures $\lambda > 1.4$) or by material yield effects (stocky structures $\lambda < 0.6$).

The slenderness limit $\lambda = 1.4$ is somewhat arbitrary selected but it correspond to the limit used in the well known empirical Johnson-Ostenfeld approach for buckling capacity assessment, beyond which the buckling capacity is set equal to the elastic buckling limit.

For illustration a schematic figure showing the buckling capacity as a function of the slenderness ratio λ is given below (Figure 3). Several design curves are included covering elastic buckling limit (eigenvalue), Johnson-Ostenfeld formula, ultimate capacity limit of plates and squash material yield.

---end---of---guidance---note---
Figure 3 Buckling design curves used for structure as function of slenderness, schematically

2.3 Usage factor definitions

The actual utilization factor is defined as the ratio between the applied loads and the corresponding buckling limit. The buckling limit is a general term to be understood as the ultimate strength limit unless otherwise specified. It follows that the most general definition is

\[\eta = \frac{\text{load}}{\text{ultimate capacity}} \]

In general a structure is subjected to a set of independent loads, e.g. say three for schematic illustration in 3D load space \((P_1, P_2, P_3)\) e.g. (axial, transverse, shear). A subscript 0 indicates a reference load state which typically will be the rule design loads.

\[
\begin{bmatrix}
\sigma_{10} \\
\sigma_{20} \\
\sigma_{30}
\end{bmatrix}
\begin{bmatrix}
P_{10} \\
P_{20} \\
P_{30}
\end{bmatrix}; \text{Reference load state, design Rule loads}
\]

A detailed load history is generally not known and the normal approach will be to assume a proportional load history, i.e. all loads are scaled from zero, through the reference state (0) and up to the point where the ultimate capacity (collapse) is identified. The collapse state is given the notation...
It follows then that the actual usage factor in load space is based on the square root measure, i.e.

\[
\eta = \sqrt{\frac{\sigma_{10}^2 + \sigma_{20}^2 + \sigma_{30}^2}{\sigma_{1u}^2 + \sigma_{2u}^2 + \sigma_{3u}^2}} = \frac{1}{\Lambda_u} = \frac{W_{act}}{W_u} = \frac{L_0}{L_u} = \frac{1}{\gamma_c}
\]

In Figure 4 the present usage factor concept is illustrated in the 3D (and 2D) load space.

Guidance note:
This definition of usage factor gives a consistent measure of how far from the collapse limit the structure actually operates. E.g. a usage factor of 0.67 means that 67% of the capacity is used, while a factor of 1.23 means that it is exceeded by 23%.

Increasing the loads by x% gives accordingly x% higher usage factor etc.

---e-n-d---o-f---g-u-i-d-a-n-c-e---n-o-t-e---
Figure 4 Definition of usage factors in load space schematically; proportional loading and ULS capacity surface

2.4 Acceptance levels – safety formats

The safety format in a rule context is written generally as

$$\eta \leq \eta_{all}$$

Here η is actual usage factor defined in [2.3] and η_{all} is the allowable level which is given in the rules, RU SHIP Pt.3 Ch.8 Sec.1 Table 1. The η_{allow} value includes safety factors as relevant for ship hull structures.
For other structures the acceptance level will be based on a case by case evaluation by the Society.
SECTION 3 CLOSED FORM METHOD (CFM) - BUCKLING CAPACITY

Symbols

For symbols not defined in this section, refer to RU SHIP Pt.3 Ch.1 Sec.4.

\[A_s = \text{net sectional area of the stiffener without attached plating, in } \text{mm}^2 \]
\[a = \text{length of the longer side of the plate panel, in } \text{mm} \]
\[b = \text{length of the shorter side of the plate panel, in } \text{mm} \]
\[b_{\text{eff}} = \text{effective width of the attached plating of a stiffener, in } \text{mm}, \text{ as defined in [2.3.5]} \]
\[b_{\text{eff1}} = \text{effective width of the attached plating of a stiffener, in } \text{mm}, \text{ without the shear lag effect taken as:} \]

- for \(\sigma_x > 0 \)

 For prescriptive assessment:

 \[b_{\text{eff1}} = \frac{C_{x1}b_1 + C_{x2}b_2}{2} \]

 For FE analysis:

 \[b_{\text{eff1}} = C_x b \]

- for \(\sigma_x \leq 0 \)

 \[b_{\text{eff1}} = b \]

\[b_f = \text{breadth of the stiffener flange, in } \text{mm}. \]
\[b_{1}, b_{2} = \text{width of plate panel on each side of the considered stiffener, in } \text{mm}. \]
\[C_{x1}, C_{x2} = \text{reduction factor defined in Table 3 calculated for the EPP1 and EPP2 on each side of the considered stiffener according to case 1}. \]
\[d = \text{length of the side parallel to the axis of the cylinder corresponding to the curved plate panel as shown in Table 4, in } \text{mm}. \]
\[e_f = \text{distance from attached plating to centre of flange, in } \text{mm}, \text{ as shown in Figure 1 to be taken as:} \]

 - \(e_f = h_w \) for flat bar profile
 - \(e_f = h_w - 0.5 t_f \) for bulb profile
 - \(e_f = h_w + 0.5 t_f \) for angle and Tee profiles

\[F_{\text{long}} = \text{coefficient defined in [2.2.4]} \]
\[F_{\text{tran}} = \text{coefficient defined in [2.2.5]} \]
\[h_w = \text{depth of stiffener web, in } \text{mm}, \text{ as shown in Figure 1} \]
\[l = \text{span, in } \text{mm}, \text{ of stiffener equal to spacing between primary supporting members or span of side frame equal to the distance between the hopper tank and top wing tank as defined in RU SHIP Pt.2 Ch.1 Sec.2 Figure 2} \]
\[R = \text{radius of curved plate panel, in } \text{mm} \]
\[R_{eH.P} = \text{specified minimum yield stress of the plate in } \text{N/mm}^2 \]
\[R_{eH.S} = \text{specified minimum yield stress of the stiffener in } \text{N/mm}^2 \]
\[S = \text{partial safety factor to be taken as:} \]

- \(S = 1.1 \) for structures which are exposed to local concentrated loads (e.g. container loads on hatch covers, foundations).
- \(S = 1.15 \) for the following members of General dry cargo ship, Multi-purpose dry cargo ship, Ore carrier or Bulk carrier (without CSR), with freeboard length \(L_{\text{LL}} \) of not
less than 150 m and carrying solid bulk cargoes having a density 1.0 t/m3 and above: stiffeners located on the hatchway coamings, the sloping plate of the topside and hopper tanks if any, the inner bottom, the inner side if any, the side shell of single side skin construction if any and the top and bottom stools of transverse bulkheads if any.

— $S = 1.0$ for all other cases.

t_p = net thickness of plate panel, in mm
t_w = net stiffener web thickness, in mm
t_f = net flange thickness, in mm
x-axis = local axis of a rectangular buckling panel parallel to its long edge
y-axis = local axis of a rectangular buckling panel perpendicular to its long edge
α = aspect ratio of the plate panel, defined in Table 3 to be taken as:

$$\alpha = \frac{a}{b}$$

β = coefficient taken as:

$$\beta = \frac{1-\psi}{\alpha}$$

ω = coefficient taken as:

$$\omega = \min (3;\alpha)$$

σ = stress applied on the edge along x axis of the buckling panel, in N/mm2
σ_y = stress applied on the edge along y axis of the buckling panel, in N/mm2
σ_1 = maximum stress, in N/mm2
σ_2 = minimum stress, in N/mm2
σ_E = elastic buckling reference stress, in N/mm2 to be taken as:

— for the application of plate limit state according to [2.2.1]:

$$\sigma_E = \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{t}{b}\right)^2$$

— for the application of curved plate panels according to [2.2.6]:

$$\sigma_E = \frac{\pi^2 E}{12(1-\nu^2)} \left(\frac{t}{d}\right)^2$$

τ = applied shear stress, in N/mm2
τ_c = buckling strength in shear, in N/mm2, as defined in [2.2.3]
ψ = edge stress ratio to be taken as:

$$\psi = \frac{\sigma}{\sigma_1}$$
\(\gamma \) = stress multiplier factor acting on loads. When the factor is such that the loads reach the interaction formulae, \(\gamma = \gamma_c \).

\(\gamma_c \) = stress multiplier factor at failure.

Figure 1 Stiffener cross sections

1 General

1.1 Scope

1.1.1 This section contains the methods for determination of the buckling capacity of plate panels, stiffeners, primary supporting members, struts, pillars, cross ties and corrugated bulkheads.

1.1.2 For the application of this section, the stresses \(\sigma_x \), \(\sigma_y \) and \(\tau \) applied on the structural members are defined in:

- RU SHIP Pt.3 Ch.8 Sec.3 for prescriptive requirements
- RU SHIP Pt.3 Ch.8 Sec.4 for FE analysis requirements

1.1.3 Ultimate buckling capacity

The ultimate buckling capacity is calculated by applying the actual stress combination and then increasing or decreasing the stresses proportionally until the interaction formulae defined in [2.1.1], [2.2.1], and [2.3.4] are equal to 1.0.

1.1.4 Buckling utilisation factor

The buckling utilisation factor of the structural member is equal to the highest utilisation factor obtained for the different buckling modes.

1.1.5 Lateral pressure

The lateral pressure is to be considered as constant in the buckling strength assessment.

2 Plate and stiffeners

2.1 Overall stiffened panel capacity

2.1.1 The elastic stiffened panel limit state is based on the following interaction formula:
where c_f and P_z are defined in [2.3.4].

2.2 Plate capacity

2.2.1 Plate limit state
Usage factor for plate buckling is defined as:

$$
\eta = \frac{1}{\gamma_c}
$$

The plate limit state is based on the following interaction formulae:

$$
\left(\frac{\gamma_{c1} \sigma_x}{\sigma_{cx}'}\right) e_\theta - B \left(\frac{\gamma_{c1} \sigma_y}{\sigma_{cy}'}\right) e_\theta - 2 \left(\frac{\gamma_{c1} \sigma_y}{\sigma_{cy}'}\right) e_\theta^{1/2} + \left(\frac{\gamma_{c1} \sigma_y}{\sigma_{cy}'}\right) e_\theta + \left(\frac{\gamma_{c1} \sigma_x}{\sigma_{cx}'}\right) e_\theta = 1
$$

$$
\left(\frac{\gamma_{c2} \sigma_x}{\sigma_{cx}'}\right) 2\beta_p^{0.25} + \left(\frac{\gamma_{c2} \sigma_x}{\sigma_{cx}'}\right) 2\beta_p^{0.25} = 1 \text{ for } \sigma_x \geq 0
$$

$$
\left(\frac{\gamma_{c3} \sigma_y}{\sigma_{cy}'}\right) 2\beta_p^{0.25} + \left(\frac{\gamma_{c3} \sigma_y}{\sigma_{cy}'}\right) 2\beta_p^{0.25} = 1 \text{ for } \sigma_y \geq 0
$$

$$
\frac{\gamma_{c4} \sigma_y}{\sigma_{cy}'} = 1
$$

with

$$
\gamma_c = \min(\gamma_{c1}, \gamma_{c2}, \gamma_{c3}, \gamma_{c4})
$$

where:

- σ_x, σ_y = Applied normal stress to the plate panel, in N/mm², to be taken as defined in [2.2.7].
- τ = Applied shear stress to the plate panel, in N/mm².
- σ_{cx} = Ultimate buckling stress, in N/mm², in direction parallel to the longer edge of the buckling panel as defined in [2.2.3].
- σ_{cy} = Ultimate buckling stress, in N/mm², in direction parallel to the shorter edge of the buckling panel as defined in [2.2.3].
- τ_c = Ultimate buckling shear stresses, in N/mm², as defined in [2.2.3].
\[\gamma_{c1}, \gamma_{c2}, \gamma_{c3}, \gamma_{c4} = \text{Stress multiplier factors at failure for each of the above different limit states.} \]
\[\gamma_{c2} \text{ and } \gamma_{c4} \text{ are only to be considered when } \sigma_x \geq 0 \text{ and } \sigma_y \geq 0 \text{ respectively.} \]

\[B = \text{Coefficient given in Table 1} \]

\[e_0 = \text{Coefficient given in Table 1} \]

\[\beta_p = \text{Plate slenderness parameter taken as:} \]

\[\beta_p = \frac{b}{t_p} \frac{R_{eH,P}}{E} \]

\section*{Table 1 Definition of coefficients \(B \) and \(e_0 \)}

<table>
<thead>
<tr>
<th>Applied stress</th>
<th>(B)</th>
<th>(e_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_x \geq 0) and (\sigma_y \geq 0)</td>
<td>0.7 - 0.3(\beta_p/\alpha^2)</td>
<td>2/(\beta_p^{0.25})</td>
</tr>
<tr>
<td>(\sigma_x < 0) and (\sigma_y < 0)</td>
<td>1.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

\subsection*{2.2.2 Reference degree of slenderness}

The reference degree of slenderness is to be taken as:

\[\lambda = \sqrt{\frac{R_{eH,P}}{K \sigma E}} \]

where:

\[K = \text{Buckling factor, as defined in Table 3 and Table 4.} \]

\subsection*{2.2.3 Ultimate buckling stresses}

The ultimate buckling stresses of plate panels, in N/mm\(^2\), are to be taken as:

\[\sigma_{cx}' = C_x R_{eH,P} \]

\[\sigma_{cy}' = C_y R_{eH,P} \]

The ultimate buckling stress of plate panels subject to shear, in N/mm\(^2\), is to be taken as:

\[\tau_c' = C_\tau \frac{R_{eH,P}}{\sqrt{3}} \]

where:

\[C_x, C_y, C_\tau = \text{Reduction factors, as defined in Table 3.} \]

- For the 1\(^{st}\) Equation of [2.2.1], when \(\sigma_x < 0 \) or \(\sigma_y < 0 \), the reduction factors are to be taken as:

\[C_x = C_y = C_\tau = 1. \]

- For the other cases:
— For SP-A and UP-A, C_y is calculated according to Table 3 by using

$$c_I = \left(1 - \frac{1}{\alpha} \right) \geq 0$$

— For SP-A and UP-A evaluated with the acceptance criteria AC-III in accident condition, C_y is calculated according to Table 3 by using

$$C_1 = 0$$

— For SP-B and UP-B, C_y is calculated according to Table 3 by using

$$c_I = 1$$

— For vertically stiffened longitudinal plating with the shorter edges supported by longitudinal plating/decks and located within $0.7z$, from horizontal neutral axis, where z is the distance from horizontal neutral axis to equivalent deck line or baseline respectively as defined in RU SHIP Pt.3 Ch.5 Sec.2 [1.6]: C_y is calculated according to Table 3 by using

$$c_I = \left(1 - \frac{1}{\alpha} \right) \geq 0$$

— For corrugation of corrugated bulkheads, C_y is calculated according to Table 3 by using

$$c_I = \left(1 - \frac{1}{\alpha} \right) \geq 0$$

The boundary conditions for plates are to be considered as simply supported, see cases 1, 2 and 15 of Table 3. If the boundary conditions differ significantly from simple support, a more appropriate boundary condition can be applied according to the different cases of Table 3 subject to the agreement of the Society.

2.2.4 Correction factor F_{long}

The correction factor F_{long} depending on the edge stiffener types on the longer side of the buckling panel is defined in Table 2. An average value of F_{long} is to be used for plate panels having different edge stiffeners. For stiffener types other than those mentioned in Table 2, the value of c is to be agreed by the Society. In such a case, value of c higher than those mentioned in Table 2 can be used, provided it is verified by buckling strength check of panel using non-linear FE analysis and deemed appropriate by the Society.
Table 2 Correction factor F_{long}

<table>
<thead>
<tr>
<th>Structural element types</th>
<th>F_{long}</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unstiffened Panel</td>
<td>1.0</td>
<td>N/A</td>
</tr>
<tr>
<td>Stiffener not fixed at both ends</td>
<td>1.0</td>
<td>N/A</td>
</tr>
<tr>
<td>Flat bar 1</td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>Bulb profile</td>
<td></td>
<td>0.30</td>
</tr>
<tr>
<td>Angle profile</td>
<td></td>
<td>0.40</td>
</tr>
<tr>
<td>T profile</td>
<td></td>
<td>0.30</td>
</tr>
<tr>
<td>Girder of high rigidity (e.g. bottom transverse)</td>
<td>1.4</td>
<td>N/A</td>
</tr>
<tr>
<td>U type profile fitted on hatch cover 2</td>
<td>$F_{\text{long}} = c + 1 ; \text{for} ; \frac{t_w}{t_p} > 1$</td>
<td>$F_{\text{long}} = c \left(\frac{t_w}{t_p} \right)^3 + 1 ; \text{for} ; \frac{t_w}{t_p} \leq 1$</td>
</tr>
</tbody>
</table>

1) t_w is the net web thickness, in mm, without the correction defined in [2.3.2].

2) b_1 and b_2 are defined in Symbols.

2.2.5 Correction factor F_{tran}

The correction factor F_{tran} is to be taken as:

- For vertically stiffened longitudinal plating with the shorter edges supported by longitudinal plating/decks and located within $0.7z$, from horizontal neutral axis, where z is the distance from horizontal neutral axis to equivalent deck line or baseline respectively as defined in RU SHIP Pt.3 Ch.5 Sec.2 [1.6]:
 - $F_{\text{tran}} = 1.25$ when the two adjacent frames are supported by one tripping bracket fitted in way of the adjacent plate panels.
 - $F_{\text{tran}} = 1.33$ when the two adjacent frames are supported by two tripping brackets each fitted in way of the adjacent plate panels.
 - $F_{\text{tran}} = 1.15$ elsewhere.
- For other cases: $F_{\text{tran}} = 1$
2.2.6 Curved plate panels

This requirement for curved plate limit state is applicable when $R/t_p \leq 2500$. Otherwise, the requirement for plate limit state given in [2.2.1] is applicable.

Usage factor for curved plate buckling is defined as:

$$
\eta = \frac{1}{\gamma_c}
$$

The curved plate limit state is based on the following interaction formula:

$$
\left(\frac{\gamma_c \sigma_{ax} S}{C_{ax} R_{eH_p}} \right)^{1.25} - 0.5 \left(\frac{\gamma_c \sigma_{ax} S}{C_{ax} R_{eH_p}} \right) \left(\frac{\gamma_c \sigma_{tg} S}{C_{tg} R_{eH_p}} \right)^{1.25} + \left(\frac{\gamma_c \sigma_{tg} S}{C_{tg} R_{eH_p}} \right)^{1.25} - \left(\frac{\gamma_c \tau \sqrt{3} S}{C_{\tau} R_{eH_p}} \right)^2 = 1.0
$$

Where:

- σ_{ax} = Applied axial stress to the cylinder corresponding to the curved plate panel, in N/mm2.
 In case of tensile axial stresses, $\sigma_{ax} = 0$.
- σ_{tg} = Applied tangential stress to the cylinder corresponding to the curved plate panel, in N/mm2.
 In case of tensile tangential stresses, $\sigma_{tg} = 0$.
- C_{ax}, C_{tg}, C_{τ} = Buckling reduction factor of the curved plate panel, as defined in Table 4.

The stress multiplier factor, γ_c, of the curved plate panel need not be taken less than the stress multiplier factor, γ_{ci}, for the expanded plate panel according to [2.2.1].
Table 3 Buckling factor and reduction factor for plane plate panels

<table>
<thead>
<tr>
<th>Case</th>
<th>Stress ratio ψ</th>
<th>Aspect ratio α</th>
<th>Buckling factor K_x</th>
<th>Reduction factor C_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\psi > 1$</td>
<td>$\alpha > 1$</td>
<td>$K_x = F_{long} \frac{8.4}{\psi + 1.1}$</td>
<td>$C_x = 1 $ for $\lambda \leq \lambda_c$</td>
</tr>
<tr>
<td></td>
<td>$\psi \leq 1$</td>
<td>$\alpha \leq 1$</td>
<td>$K_x = F_{long} [5.975(1 - \psi)^2]$</td>
<td>$C_x = c \left(\frac{1}{\lambda} - \frac{0.22}{\lambda^2} \right)$ for $\lambda > \lambda_c$</td>
</tr>
</tbody>
</table>

where:

- $c = (1.25 - 0.12\psi) \leq 1.25$
- $\lambda_c = \frac{c}{2} \left(1 + \sqrt{1 - \frac{0.88}{c}} \right)$
<table>
<thead>
<tr>
<th>Case</th>
<th>Stress ratio ψ</th>
<th>Aspect ratio α</th>
<th>Buckling factor K</th>
<th>Reduction factor C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$0 \leq \psi \leq 1$</td>
<td>$\alpha \leq 6$</td>
<td>$f_1 = (1 - \psi)(\alpha - 1)$</td>
<td>$C_y = 1$ when $\sigma_y < 0$; $C_y = c \left(\frac{1}{\lambda} - \frac{R + F^2}{\lambda^2} (H - R) \right)$ where: $c = (1.25 - 0.12\psi) \leq 1.25$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha > 6$</td>
<td>$f_1 = 0.6 \left(1 - \frac{6\psi}{\alpha} \right)(\alpha + \frac{14}{\alpha})$ but not greater than $14.5 - \frac{0.35}{\alpha^2}$</td>
<td>$R = \lambda (1 - \frac{\lambda}{c})$ for $\lambda < \lambda_c$; $R = 0.22$ for $\lambda \geq \lambda_c$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$K_y = \frac{200F_{\text{tran}}(1 + \beta^2)^2}{(1 - f_3)(100 + 2.4\beta^2 + 6.9f_1 + 23f_2)}$</td>
<td>$\lambda_c = 0.5c \left(1 + \sqrt{1 - 0.88c} \right)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\frac{4}{3} \leq \alpha < \infty$</td>
<td>$f_1 = 0.6\left(\frac{1}{\beta} + 14\beta \right)$ but not greater than $14.5 - 0.35\beta^2$</td>
<td>$F = \left[1 - \left(\frac{K}{0.91} - 1 \right) \lambda_p^2 \right] c_1 \geq 0$; $\lambda_p^2 = \lambda^2 - 0.5$ for $1 \leq \lambda_p^2 \leq 3$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1 < \alpha \leq \frac{4}{3}$</td>
<td>$f_2 = f_3 = 0$</td>
<td>c_1 as defined in [2.2.3]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\frac{1}{4} \leq \alpha \leq 1$</td>
<td>$f_1 = \frac{1}{\beta} - 1$; $f_2 = f_3 = 0$</td>
<td>$H = \lambda \frac{2\lambda}{c(T + \sqrt{T^2 - 4})} \geq R$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0 < \alpha < \frac{1}{4}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 3

Class guideline — DNVGL-CG-0128. Edition October 2015

Buckling

DNV GL AS
<table>
<thead>
<tr>
<th>Case</th>
<th>Stress ratio ψ</th>
<th>Aspect ratio α</th>
<th>Buckling factor K</th>
<th>Reduction factor C</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\psi \leq 1.5$</td>
<td>$1 - \psi < 3(1 - \psi)$</td>
<td>$\alpha > 1.5$:</td>
<td>$f_1 = 2\left(\frac{1}{\beta} - \frac{16}{3}(1 - \omega)\right)(\frac{1}{\beta} - 1)$</td>
<td>$f_2 = 3\beta - 2$, $f_3 = 0$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f_1 = \frac{1}{\beta} - (2 - \omega \beta)^4 - 9(\omega \beta - 1)\left(\frac{2}{3} - \beta\right)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f_2 = f_3 = 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f_4 = (1.5 - \text{Min}(1.5; \alpha))^2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case</td>
<td>Stress ratio ψ</td>
<td>Aspect ratio α</td>
<td>Buckling factor K</td>
<td>Reduction factor C</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>1</td>
<td>$0.75(1 - \psi) \leq \alpha < 1 - \psi$</td>
<td>$1 \geq \psi > 0$</td>
<td>$f_1 = 0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$f_2 = 1 + 2.31(\beta - 1) - 48\left(\frac{4}{3} - \beta \right)f_4^2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$f_3 = 3f_4(\beta - 1)\left(\frac{f_4}{1.81} - \frac{\alpha - 1}{1.31}\right)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$f_4 = (1.5 - \text{Min}(1.5; \alpha))^2$</td>
<td></td>
</tr>
<tr>
<td>2)</td>
<td>$0 > \psi \geq -1$</td>
<td>$\psi < \frac{\alpha - 1}{\alpha + 1}$</td>
<td>$K_y = 5.972F_{\text{trans}}\frac{\beta^2}{1 - f_3}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$f_3 = f_5\left(\frac{f_5}{1.81} + \frac{1 + 3\psi}{5.24}\right)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$f_5 = \frac{9}{16}(1 + \text{Max}(-1; \psi))^2$</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$0 \leq \psi < 1$</td>
<td>$\psi > \frac{\alpha - 1}{\alpha + 1}$</td>
<td>$K_x = \frac{4(0.425 + 1/\alpha^2)}{3\psi + 1}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$C_x = 1 \text{ for } \lambda \leq 0.7$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$C_x = \frac{1}{\lambda^2 + 0.51} \text{ for } \lambda > 0.7$</td>
<td></td>
</tr>
<tr>
<td>2)</td>
<td>$-1 \leq \psi < 0$</td>
<td>$\psi \leq \frac{\alpha - 1}{\alpha + 1}$</td>
<td>$K_x = 4(0.425 + 1/\alpha^2)(1 + \psi)$</td>
<td>$-5\psi(1 - 3.42\psi)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case</td>
<td>Stress ratio ψ</td>
<td>Aspect ratio α</td>
<td>Buckling factor K_x</td>
<td>Reduction factor C_x</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>4</td>
<td>$1 > \psi > 1$</td>
<td>$1 \geq \alpha \geq 1.64$</td>
<td>$K_x = \left(0.425 + \frac{1}{\alpha^2}\right) \frac{3 - \psi}{2}$</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$\alpha \geq 1.64$</td>
<td>$\alpha < 1.64$</td>
<td>$K_x = \frac{1}{\alpha^2} + 0.56 + 0.13\alpha^2$</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>$1 \geq \psi \geq 0$</td>
<td>$1 \geq \alpha \geq 0$</td>
<td>$K_y = \frac{4(0.425 + \alpha^2)}{(3\psi + 1)\alpha^2}$</td>
<td>$C_x = 1$ for $\lambda \leq 0.7$</td>
</tr>
<tr>
<td></td>
<td>$0 > \psi > -1$</td>
<td></td>
<td></td>
<td>$C_x = \frac{1}{\lambda^2 + 0.51}$ for $\lambda > 0.7$</td>
</tr>
<tr>
<td>7</td>
<td>$1 > \psi > -1$</td>
<td></td>
<td>$K_y = (0.425 + \alpha^2)\left(\frac{3 - \psi}{2\alpha^2}\right)$</td>
<td></td>
</tr>
<tr>
<td>Case</td>
<td>Stress ratio ψ</td>
<td>Aspect ratio α</td>
<td>Buckling factor K</td>
<td>Reduction factor C</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>8</td>
<td>σ_y σ_x</td>
<td>$\frac{b}{a}$</td>
<td>$K_y = 1 + \frac{0.56}{\alpha^2} + \frac{0.13}{\alpha^4}$</td>
<td></td>
</tr>
</tbody>
</table>
| 9 | σ_x σ_y | $\frac{b}{a}$ | $K_x = 6.97$ | $C_x = 1$ for $\lambda \leq 0.83$
$C_x = 1.13 \left(\frac{1}{\lambda} - \frac{0.22}{\lambda^2} \right)$ for $\lambda > 0.83$ |
| 10 | σ_x σ_y | $\frac{b}{a}$ | $K_y = 4 + \frac{2.07}{\alpha^2} + \frac{0.67}{\alpha^4}$ | $C_y = 1$ for $\lambda \leq 0.83$
$C_y = 1.13 \left(\frac{1}{\lambda} - \frac{0.22}{\lambda^2} \right)$ for $\lambda > 0.83$ |
| 11 | σ_x σ_y | $\frac{b}{a}$ | $K_x = 4$ | $C_x = 1$ for $\lambda \leq 0.83$
$C_x = 1.13 \left(\frac{1}{\lambda} - \frac{0.22}{\lambda^2} \right)$ for $\lambda > 0.83$
$K_x = 4 + 2.74 \left[\frac{4 - \alpha}{3} \right]^4$ for $\alpha < 4$ |
Buckling

<table>
<thead>
<tr>
<th>Case</th>
<th>Stress ratio ψ</th>
<th>Aspect ratio α</th>
<th>Buckling factor K</th>
<th>Reduction factor C</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>$K_y = K_y$ determined as per case 2</td>
<td>$\begin{align*} C_y &= C_{y2} \ \text{For } \alpha < 2: \ \text{For } \alpha \geq 2: \ C_y &= (1.06 + \frac{1}{10\alpha}) C_{y2} \end{align*}$ where: $C_{y2} = C_y$ determined as per case 2</td>
</tr>
<tr>
<td>13</td>
<td>$\alpha \geq 4$</td>
<td></td>
<td>$K_x = 6.97$</td>
<td>$\begin{align*} C_x &= 1 \text{ for } \lambda \leq 0.83 \ C_x &= 1.13 \left(\frac{1}{\lambda} - \frac{0.22}{\lambda^2}\right) \text{ for } \lambda > 0.83 \end{align*}$</td>
</tr>
<tr>
<td>14</td>
<td>$\alpha < 4$</td>
<td></td>
<td>$K_y = 6.97 + 3.1 \left[\frac{4}{3} - \frac{\alpha}{\lambda}\right]^4$</td>
<td>$\begin{align*} C_x &= 1 \text{ for } \lambda \leq 0.83 \ C_x &= 1.13 \left(\frac{1}{\lambda} - \frac{0.22}{\lambda^2}\right) \text{ for } \lambda > 0.83 \end{align*}$</td>
</tr>
<tr>
<td>Case</td>
<td>Stress ratio ψ</td>
<td>Aspect ratio α</td>
<td>Buckling factor K</td>
<td>Reduction factor C</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>15</td>
<td>t</td>
<td>t</td>
<td></td>
<td>$K = \sqrt[3]{5.34 + \frac{4}{\alpha^2}}$</td>
</tr>
<tr>
<td>16</td>
<td>t</td>
<td>t</td>
<td></td>
<td>$K = \sqrt[3]{5.34 + \text{Max}\left[\frac{4}{\alpha^2}, \frac{7.15}{\alpha^{2.5}}\right]}$</td>
</tr>
<tr>
<td>17</td>
<td>t</td>
<td>t</td>
<td>r</td>
<td>$K = K_{\text{case 11}} r$</td>
</tr>
<tr>
<td>18</td>
<td>t</td>
<td>t</td>
<td>4)</td>
<td>$K = 3^{0.5} (0.6 + 4/\alpha^2)$</td>
</tr>
<tr>
<td>19</td>
<td>t</td>
<td>t</td>
<td>5)</td>
<td>$K = 8$</td>
</tr>
</tbody>
</table>
Edge boundary conditions:

- Plate edge free.
- Plate edge simply supported.
- Plate edge clamped.

<table>
<thead>
<tr>
<th>Case</th>
<th>Stress ratio ψ</th>
<th>Aspect ratio α</th>
<th>Buckling factor K</th>
<th>Reduction factor C</th>
</tr>
</thead>
</table>

Note 1: Cases listed are general cases. Each stress component (σ_x, σ_y) is to be understood in local coordinates.

Note 2: For openings in web plate assessed by Case 3, the effective plate length should be adjusted as follows:

\[
a = \frac{200R't_p}{3a'} \frac{2b}{h_0} + 1
\]

\[
R' = \max\left(\frac{a'}{3}\right)
\]

Note 3: For openings in web plate assessed by Case 6, the effective plate breadth should be adjusted as follows:

\[
b = \frac{200R't_p}{3b'} \frac{2a}{h_0} + 1
\]

\[
R' = \max\left(\frac{b'}{3}\right)
\]

Note 4: For openings in web plate assessed by Case 18, the effective plate length should be adjusted as follows:

\[
a = 1.4R' \frac{2b}{h_0} + 1
\]

\[
R' = \max\left(\frac{a'}{3}\right)
\]
Note 5: For openings in web plate assessed by Case 19, the effective plate breadth should be adjusted as follows:

\[
b = 1.4 R' \left(\frac{2a}{h_0} + 1 \right)
\]

\[
R' = \max \left(R, \frac{b'}{3} \right)
\]

Table 4 Buckling factor and reduction factor for curved plate panel with \(R/t_p \leq 2500 \)

<table>
<thead>
<tr>
<th>Case</th>
<th>Aspect ratio</th>
<th>Buckling factor (K)</th>
<th>Reduction factor (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\frac{d}{R} \leq 0.5 \sqrt{\frac{R}{t_p}})</td>
<td>(K_{ax} = 1 + \frac{2}{3} \frac{d}{Rt_p})</td>
<td>(C_{ax} = 1) for (\lambda \leq 0.25)</td>
</tr>
<tr>
<td></td>
<td>(\frac{d}{R} > 0.5 \sqrt{\frac{R}{t_p}})</td>
<td>(K_{ax} = 0.267 \frac{d}{Rt_p} \left[3 - \frac{d}{R} \sqrt{\frac{t_p}{R}} \right] \geq 0.4 \frac{d^2}{Rt_p})</td>
<td>(C_{ax} = 0.2) for (\lambda \geq 1.5)</td>
</tr>
</tbody>
</table>

For curved single fields, e.g. bilge strake, which are bounded by plane panels as shown in RU SHIP Pt.3 Ch.6 Sec.4 Figure 1:

\(C_{ax} = \frac{0.65}{\lambda} \leq 1.0 \)
Case 2a

<table>
<thead>
<tr>
<th>Aspect ratio</th>
<th>Buckling factor K_{tg}</th>
<th>Reduction factor C_{tg}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{d}{R} \leq 1.63 \sqrt{\frac{R}{t_p}}$</td>
<td>$K_{tg} = \frac{d}{\sqrt{R t_p}} + 3 \left(\frac{R t_p}{d} \right)^{0.17}$</td>
<td>For general application:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_{tg} = 1$ for $\lambda \leq 0.4$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_{tg} = 1.274 - 0.686 \lambda$ for $0.4 < \lambda \leq 1.2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_{tg} = \frac{0.65}{\lambda^2}$ for $\lambda > 1.2$</td>
</tr>
</tbody>
</table>

For curved single fields, e.g. bilge strake, which are bounded by plane panels as shown in RU SHIP Pt.3 Ch.6 Sec.4 Figure 1:

$C_{tg} = \frac{0.8}{\lambda^2}$ for $\lambda \leq 1.0$

Case 2b

<table>
<thead>
<tr>
<th>Aspect ratio</th>
<th>Buckling factor K_{tg}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{d}{R} > 1.63 \sqrt{\frac{R}{t_p}}$</td>
<td>$K_{tg} = 0.3 \left(\frac{R}{d t_p} \right)^2$</td>
</tr>
<tr>
<td>$d = \frac{p_0 \cdot R}{t_p}$</td>
<td>$K_{tg} = 0.6d + \sqrt{R t_p} - 0.3 \frac{R t_p}{d^2}$</td>
</tr>
</tbody>
</table>

As in load case 2a.

Case 3

<table>
<thead>
<tr>
<th>Aspect ratio</th>
<th>Buckling factor K_{tg}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{d}{R} \leq \sqrt{\frac{R}{t_p}}$</td>
<td>$K_{tg} = 0.6d + \sqrt{R t_p} - 0.3 \frac{R t_p}{d^2}$</td>
</tr>
<tr>
<td>$\frac{d}{R} > \sqrt{\frac{R}{t_p}}$</td>
<td>$K_{tg} = 0.3 \frac{d^2}{R^2} + 0.291 \left(\frac{R}{d t_p} \right)^2$</td>
</tr>
</tbody>
</table>

p_0 = external pressure in [N/mm²]
2.2.7 Applied normal stress to plate panel

The normal stress, σ_x and σ_y, in N/mm2, to be applied for the plate panel capacity calculation as given in [2.2.1] are to be taken as follows:

- For FE analysis, the reference stresses as defined in RU SHIP Pt.3 Ch.8 Sec.4.
- For prescriptive assessment, the axial or transverse compressive stresses calculated according to RU SHIP Pt.3 Ch.8 Sec.3 [2.2.1], at load calculation points of the considered elementary plate panel, as defined in RU SHIP Pt.3 Ch.3 Sec.7 [2].
- For grillage analysis where the stresses are obtained based on beam theory, the stresses taken as:

$$
\sigma_x = \frac{\sigma_{xb} + \nu \sigma_{yb}}{1 - \nu^2} \\
\sigma_y = \frac{\sigma_{yb} + \nu \sigma_{xb}}{1 - \nu^2}
$$

where:

- σ_{xb}, σ_{yb} = Stress, in N/mm2, from grillage beam analysis respectively along x or y axis of the attached buckling panel.

The shear stress τ, in N/mm2, to be applied for the plate panel capacity calculation as given in [2.2.1] are to be taken as follows:

- For FE analysis, the reference shear stresses as defined in RU SHIP Pt.3 Ch.8 Sec.4 [2.4].
— For prescriptive assessment, the shear stresses calculated according to RU SHIP Pt.3 Ch.8 Sec.4 [2.2.1], at load calculation points of the considered elementary plate panel, as defined in RU SHIP Pt.3 Ch.3 Sec.7 [2].
— For grillage beam analysis, $\tau = 0$ in the attached buckling panel.

2.3 Stiffeners

2.3.1 Buckling modes
The following buckling modes are to be checked:
— Stiffener induced failure (SI).
— Associated plate induced failure (PI).

2.3.2 Web thickness of flat bar
For accounting the decrease of the stiffness due to local lateral deformation, the effective web thickness of flat bar stiffener, in mm, is to be used in [2.3.4] for the calculation of the net sectional area, A_s, the net section modulus, Z, and the moment of inertia, I, of the stiffener and is taken as:

$$t_{w,\text{red}} = t_w \left(1 - \frac{2\pi^2}{3} \left(\frac{h_w}{s}\right)^2 \left(1 - \frac{b_{\text{eff}}}{s}\right)\right)$$

2.3.3 Idealisation of bulb profile
Bulb profiles are to be considered as equivalent angle profiles, as defined in RU SHIP Pt.3 Ch.3 Sec.7 [1.4.1].

2.3.4 Ultimate buckling capacity
When $\sigma_a + \sigma_b + \sigma_w > 0$, the ultimate buckling capacity for stiffeners is to be checked according to the following interaction formula:

$$\frac{\gamma_c \sigma_a + \sigma_b + \sigma_w}{R_{\text{eff}}} S = 1$$

where:

σ_a = Effective axial stress, in N/mm2, at mid span of the stiffener, acting on the stiffener with its attached plating.

$$\sigma_a = \sigma_x \frac{s t_p + A_s}{b_{\text{eff}} t_p + A_s}$$

σ_x = Nominal axial stress, in N/mm2, acting on the stiffener with its attached plating.

— For FE analysis, σ_x is the FE corrected stress as defined in [2.3.6] in the attached plating in the direction of the stiffener axis.
— For prescriptive assessment, σ_x is the axial stress calculated according to RU SHIP Pt.3 Ch.8 Sec.3 [2.2.1] at load calculation point of the stiffener, as defined in RU SHIP Pt.3 Ch.3 Sec.7 [3].
— For grillage beam analysis, σ_x is the stress acting along the x-axis of the attached buckling panel.

\(R_{el} \) = Specified minimum yield stress of the material, in N/mm\(^2\):

\[
R_{el} = R_{el,S} \quad \text{for stiffener induced failure (SI)}.
\]

\[
R_{el} = R_{el,P} \quad \text{for plate induced failure (PI)}.
\]

\(\sigma_b \) = Bending stress in the stiffener, in N/mm\(^2\):

\[
\sigma_b = \frac{M_0 + M_1}{1000Z}
\]

\(Z \) = Net section modulus of stiffener, in cm\(^3\), including effective width of plating according to [2.3.5], to be taken as:

- The section modulus calculated at the top of stiffener flange for stiffener induced failure (SI).
- The section modulus calculated at the attached plating for plate induced failure (PI).

\(C_{PI} \) = Plate induced failure pressure coefficient:

\(C_{PI} = 1 \) if the lateral pressure is applied on the side opposite to the stiffener.

\(C_{PI} = -1 \) if the lateral pressure is applied on the same side as the stiffener.

\(C_{SI} \) = Stiffener induced failure pressure coefficient:

\(C_{SI} = -1 \) if the lateral pressure is applied on the side opposite to the stiffener.

\(C_{SI} = 1 \) if the lateral pressure is applied on the same side as the stiffener.

\(M_1 \) = Bending moment, in Nmm, due to the lateral load \(P \):

\[
M_1 = C_i \frac{|P|s\ell^2}{24 \times 10^3} \quad \text{for continuous stiffener}
\]

\[
M_1 = C_i \frac{|P|s\ell^2}{8 \times 10^3} \quad \text{for sniped stiffener}
\]

\(P \) = Lateral load, in kN/m\(^2\).

- For FE analysis, \(P \) is the average pressure as defined in RU SHIP Pt.3 Ch.8 Sec.4 [2.5.2] in the attached plating.

- For prescriptive assessment, \(P \) is the pressure calculated at load calculation point of the stiffener, as defined in RU SHIP Pt.3 Ch.3 Sec.7 [3].

\(C_i \) = Pressure coefficient:

\(C_i = C_{SI} \) for stiffener induced failure (SI).

\(C_i = C_{PI} \) for plate induced failure (PI).

\(M_0 \) = Bending moment, in Nmm, due to the lateral deformation \(w \) of stiffener:
\[M_0 = F_E \left(\frac{P_z w}{c_f - P_z} \right) \quad \text{with} \quad c_f - P_z > 0 \]

\[F_E = \left(\frac{\pi}{L} \right)^2 EI \times 10^4 \]

\[I = \text{Moment of inertia, in cm}^4, \text{of the stiffener including effective width of attached plating according to [2.3.5].} \]

\[I \geq \frac{s \, t_p^3}{12 \times 10^4} \]

\[t_p = \text{Net thickness of plate, in mm, to be taken as} \]

\[P_z = \text{Nominal lateral load, in N/mm}^2, \text{acting on the stiffener due to stresses, } \sigma_x, \sigma_y, \text{ and } \tau, \text{ in the attached plating in way of the stiffener mid span:} \]

\[P_z = \frac{t_p}{s} \left(\sigma_{xl} \left(\frac{\pi}{L} \right)^2 + 2c \, \gamma \, \sigma_y + \sqrt{2} \, \tau \right) \]

\[\sigma_{xl} = \gamma \, \sigma_x \left(1 + \frac{A_s}{st_p} \right) \quad \text{but not less than 0} \]

\[\tau_1 = \gamma |\tau| - t_p \sqrt{2} \left(\frac{E}{R_{eH_p}} \left(\frac{m_1^2 + m_2^2}{a^2 + b^2} \right) \right) \quad \text{but not less than 0} \]

\[\sigma_y = \text{Stress applied on the edge along } y \text{ axis of the buckling panel, in N/mm}^2, \text{ but not less than 0.} \]

\[\text{— For FE analysis, } \sigma_y \text{ is the FE corrected stress as defined in [2.3.6] in the attached plating in the direction perpendicular to the stiffener axis.} \]

\[\text{— For prescriptive assessment, } \sigma_y \text{ is the maximum compressive stress calculated according to RU SHIP Pt.3 Ch.8 Sec.3 [2.2.1], at load calculation points of the stiffener attached plating, as defined in RU SHIP Pt.3 Ch3 Sec.7 [2].} \]

\[\text{— For grillage beam analysis, } \sigma_y \text{ is the stress acting along the } y \text{-axis of the attached buckling panel.} \]

\[\tau = \text{Applied shear stress, in N/mm}^2. \]
For FE analysis, τ is the reference shear stress as defined in RU SHIP Pt.3 Ch.8, Sec4 [2.4.2] in the attached plating.

For prescriptive assessment, τ is the shear stress calculated according to RU SHIP Pt.3 Ch.8 Sec.3 [2.2.1] at load calculation point of the stiffener attached plating, as defined in RU SHIP Pt.3 Ch.3 Sec.7 [2].

For grillage beam analysis, $\tau = 0$ in the attached buckling panel.

$m_1, m_2 = $ Coefficients taken equal to:

\[
m_1 = 1.47, \ m_2 = 0.49 \quad \text{for} \quad \alpha \geq 2
\]

\[
m_1 = 1.96, \ m_2 = 0.37 \quad \text{for} \quad \alpha < 2
\]

$c = $ Factor taking into account the stresses in the attached plating acting perpendicular to the stiffener's axis:

\[
c = 0.5(1 + \psi) \quad \text{for} \quad 0 \leq \psi \leq 1
\]

\[
c = \frac{1}{2(1 - \psi)} \quad \text{for} \quad \psi < 0
\]

$\psi = $ Edge stress ratio for case 2 according to Table 3.

$w = $ Deformation of stiffener, in mm:

\[
w = w_0 + w_1
\]

$w_0 = $ Assumed imperfection, in mm, to be taken as:

\[
w_0 = \ell / 1000 \quad \text{in general.}
\]

\[
w_0 = -w_{na} \quad \text{for stiffeners sniped at both ends considering stiffener induced failure (SI).}
\]

\[
w_0 = w_{na} \quad \text{for stiffeners sniped at both ends considering plate induced failure (PI).}
\]

$w_{na} = $ Distance from the mid-point of attached plating to the neutral axis of the stiffener calculated with the effective width of the attached plating according to [2.3.5].

$w_1 = $ Deformation of stiffener, in mm, at mid-point of stiffener span due to lateral load P. In case of uniformly distributed load, w_1 is to be taken as:
$w_I = C_l \frac{|P| s^4}{384 \times 10^7 EI}$ in general

$w_I = C_l \frac{5|P| s^4}{384 \times 10^7 EI}$ for stiffeners snipped at both ends

$c_f = \text{Elastic support provided by the stiffener, in N/mm}^2$

$c_f = F_E \left(\frac{\pi}{l} \right)^2 (1 + c_p)$

$c_p = \frac{1}{1 + \frac{0.91}{c_{xa}} \left(\frac{12l}{st_p^3} \right)^{10^4} - 1}$

$c_{xa} = \text{Coefficient to be taken as:}$

$c_{xa} = \left(\frac{l}{2s} \right)^2$ for $l \geq 2s$

$c_{xa} = \left(1 + \left(\frac{l}{2s} \right)^2 \right)^2$ for $l < 2s$

$\sigma_w = \text{Stress due to torsional deformation, in N/mm}^2$, to be taken as:

$\sigma_w = E y_w \left(\frac{t_f}{2} + h_w \right) \Phi_0 \left(\frac{\pi}{l} \right)^2 \left(1 - \frac{1}{0.4 R_{EH.S} \sigma_{ET}} - 1 \right)$ for stiffener induced failure (SI).

$\sigma_w = 0$ for plate induced failure (PI).

$y_w = \text{Distance, in mm, from centroid of stiffener cross section to the free edge of stiffener flange, to be taken as:}$
\[y_w = \frac{t_w}{2} \] for flat bar.

\[y_w = b_f - \frac{h_w t_w^2 + t_f b_f^2}{2A_s} \] for angle and bulb profiles.

\[y_w = \frac{b_f}{2} \] for T profile.

\[\Phi_0 = \text{Coefficient taken as:} \]

\[\Phi_0 = \frac{f}{h_w} \times 10^{-3} \]

\[\sigma_{ET} = \text{Reference stress for torsional buckling, in N/mm}^2: \]

\[\sigma_{ET} = \frac{E}{I_p} \left(\frac{\varepsilon^2 I_\omega 10^2}{\ell^2} + 0.385 I_T \right) \]

\[I_p = \text{Net polar moment of inertia of the stiffener, in cm}^4, \text{about point C as shown in Figure 1, as defined in Table 5.} \]

\[I_T = \text{Net St. Venant’s moment of inertia of the stiffener, in cm}^4, \text{as defined in Table 5.} \]

\[I_\omega = \text{Net sectional moment of inertia of the stiffener, in cm}^6, \text{about point C as shown in Figure 1, as defined in Table 5.} \]

\[\varepsilon = \text{Degree of fixation.} \]

\[\varepsilon = 1 + \frac{\left(\frac{f}{\pi} \right)^2 10^{-3}}{I_\omega \left(\frac{0.75s}{t_f^3 + e_f - 0.5t} \right)} \]

\[A_w = \text{Net web area, in mm}^2. \]

\[A_f = \text{Net flange area, in mm}^2. \]
Table 5 Moments of inertia

<table>
<thead>
<tr>
<th></th>
<th>Flat bars 1</th>
<th>Bulb, angle and T profiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_p</td>
<td>$\frac{h_w^3}{3 \times 10^4} t_w$</td>
<td>$(A_w (e_f - 0.5 t_p)^2 / 3 + A_f e_f^2) \times 10^{-4}$</td>
</tr>
<tr>
<td>I_T</td>
<td>$\frac{h_w t_w^3}{3 \times 10^4} (1 - 0.63 \frac{t_w}{h_w})$</td>
<td>$(e_f - 0.5 t_f) t_w^3 (1 - 0.63 \frac{t_w}{e_f - 0.5 t_f}) + \frac{b_f t_f^3}{3 \times 10^4} (1 - 0.63 \frac{t_f}{b_f})$</td>
</tr>
<tr>
<td>I_{wo}</td>
<td>$\frac{h_w^3}{36 \times 10^6} t_w^3$</td>
<td>$\frac{A_f e_f^2 b_f^2}{12 \times 10^6} (A_f + 2.6 A_w) / (A_f + A_w)$</td>
</tr>
</tbody>
</table>

for bulb and angle profiles.

$\frac{b_f^3}{12 \times 10^6} t_f e_f^2$ for T profiles.

1) t_w is the net web thickness, in mm, not $t_{w,\text{red}}$ as defined in [2.3.2].

2.3.5 Effective width of attached plating

The effective width of attached plating of stiffeners, b_{eff}, in mm, is to be taken as:

- For $\sigma_x > 0$:
 - For FE analysis,
 \[b_{eff} = \min \left(C_x b, \chi_s s \right) \]
 - For prescriptive assessment,
 \[b_{eff} = \min \left(\frac{C_{x1} b_1 + C_{x2} b_2}{2}, \chi_s s \right) \]

- For $\sigma_x \leq 0$:
 \[b_{eff} = \chi_s s \]

where:
\(\chi_s \) = Effective width coefficient to be taken as:

\[
\chi_s = \min \left[\frac{1.12}{1 + \left(\frac{l_{\text{eff}}}{s} \right)^{1.6}} \right]
\]

for \(\frac{l_{\text{eff}}}{s} \geq 1 \)

\[\chi_s = 0.407 \frac{l_{\text{eff}}}{s} \]

for \(\frac{l_{\text{eff}}}{s} < 1 \)

\(l_{\text{eff}} \) = Effective length of the stiffener, in mm, taken as:

\[l_{\text{eff}} = \frac{l}{\sqrt{3}} \]

for stiffener fixed at both ends.

\[l_{\text{eff}} = 0.75 \ell \]

for stiffener simply supported at one end and fixed at the other.

\[l_{\text{eff}} = \ell \]

for stiffener simply supported at both ends.

2.3.6 FE corrected stresses for stiffener capacity

When the reference stresses \(\sigma_x \) and \(\sigma_y \) obtained by FE analysis according to RU SHIP Pt.3 Ch.8 Sec.4 [2.4] are both compressive, they are to be corrected according to the following formulae:

- If \(\sigma_x < \nu \sigma_y \):

 \[\sigma_{x_{\text{cor}}} = 0 \]

 \[\sigma_{y_{\text{cor}}} = \sigma_y \]

- If \(\sigma_y < \nu \sigma_x \):

 \[\sigma_{x_{\text{cor}}} = \sigma_x \]

 \[\sigma_{y_{\text{cor}}} = 0 \]
— In the other cases:

\[
\sigma_{xcor} = \sigma_x - \nu \sigma_y \\
\sigma_{ycor} = \sigma_y - \nu \sigma_x
\]

2.4 Primary supporting members

2.4.1 Web plate in way of openings

The web plate of primary supporting members with openings is to be assessed for buckling based on the combined axial compressive and shear stresses.

The web plate adjacent to the opening on both sides is to be considered as individual unstiffened plate panels as shown in Table 6.

The interaction formulae of [2.2.1] are to be used with:

\[
\sigma_x = \sigma_{av} \\
\sigma_y = 0 \\
\tau = \tau_{av}
\]

where:

\[
\sigma_{av} = \text{Weighted average compressive stress, in N/mm}^2, \text{ in the area of web plate being considered, i.e. P1, P2 or P3 as shown in Table 6.}
\]

For the application of the Table 6, the weighted average shear stress is to be taken as:

— Opening modelled in primary supporting members:

\[
\tau_{av} = \text{Weighted average shear stress, in N/mm}^2, \text{ in the area of web plate being considered, i.e. P1, P2 or P3 as shown in Table 6.}
\]

— Opening not modelled in primary supporting members:

\[
\tau_{av} = \text{Weighted average shear stress, in N/mm}^2, \text{ given in Table 6.}
\]
Table 6 Reduction factors

<table>
<thead>
<tr>
<th>Configuration</th>
<th>(C_x) (C_y)</th>
<th>(C_T)</th>
<th>Opening modelled in PSM</th>
<th>Opening not modelled in PSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Without edge reinforcements:</td>
<td>Separate reduction factors are to be applied to areas (P1) and (P2) using case 3 or case 6 in Table 3, with edge stress ratio:</td>
<td>Separate reduction factors are to be applied to areas (P1) and (P2) using case 18 or case 19 in Table 3</td>
<td></td>
<td>— When case 17 of Table 3 is applicable: A common reduction factor is to be applied to areas (P1) and (P2) using case 137 in Table 3 for area marked with: (\tau_{av} = \tau_{av}^{(web)})</td>
</tr>
<tr>
<td></td>
<td>(\psi = 1.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) With edge reinforcements: Separate reduction factors are to be applied for areas \(P1 \) and \(P2 \) using \(C_x \) for case 1 or \(C_y \) for case 2 in Table 3 with stress ratio: | Separate reduction factors are to be applied to areas \(P1 \) and \(P2 \) using case 15 in Table 3 | Separate reduction factors are to be applied for areas \(P1 \) and \(P2 \) using case 15 in Table 3 with: \(\tau_{av} = \tau_{av}^{(web)} h / (h-h_0) \) | | |
| ![Diagram](image2) | \(\psi = 1.0 \) | | | |
Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>C_x, C_y</th>
<th>C_R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(c) Example of hole in web:

Panels $P1$ and $P2$ are to be evaluated in accordance with (a). Panel $P3$ is to be evaluated in accordance with (b).

Note 1: Web panels to be considered for buckling in way of openings are shown shaded and numbered $P1$, $P2$, etc.

Where:

- h = Height, in m, of the web of the primary supporting member in way of the opening.
- h_0 = Height, in m, of the opening measured in the depth of the web.
- $\tau_{av(web)}$ = Weighted average shear stress, in N/mm2, over the web height h of the primary supporting member.

2.4.2

The equivalent plate panel of web plate of primary supporting members crossed by perpendicular stiffeners is to be idealised as shown in Figure 2.

![Figure 2 Web plate idealisation](image)

3 Corrugated bulkhead

The buckling utilisation factor of flange and web of corrugation of corrugated bulkheads is based on the combination of in plane stresses and shear stress.

The buckling stresses to be used in the interaction formulation in [2.2.1] are to be determined based on case 1, 2 and 15, together with the following coefficients:

- $\alpha = 2$
ψ_x = ψ_y = 1

4 Struts, pillars and cross ties

4.1 Buckling utilisation factor

The buckling utilisation factor, \(\eta \), for axially compressed struts, pillars and cross ties is to be taken as:

\[
\eta = \frac{\sigma_{av}}{\sigma_{cr}}
\]

where:

\(\sigma_{av} \) = average axial compressive stress in the member, in N/mm\(^2\).

\(\sigma_{cr} \) = minimum critical buckling stress, in N/mm\(^2\), taken as:

\[
\sigma_{cr} = \sigma_E \quad \text{for} \quad \sigma_E \leq 0.5 R_{eh}
\]

\[
\sigma_{cr} = \left(1 - \frac{R_{eh} S}{4 \sigma_E}\right) R_{eh} \quad \text{for} \quad \sigma_E > 0.5 R_{eh}
\]

\(\sigma_E \) = minimum elastic compressive buckling stress, in N/mm\(^2\), according to [4.2] to [4.4].

\(R_{eh} \) = specified minimum yield stress of the considered member, in N/mm\(^2\). For built up members, the lowest specified minimum yield stress is to be used.

The correction of panel breadth is applicable also for other slot configurations provided that the web or collar plate is attached to at least one side of the passing stiffener.

4.2 Elastic column buckling stress

The elastic compressive column buckling stress, \(\sigma_{EC} \), in N/mm\(^2\) of members subject to axial compression is to be taken as:

\[
\sigma_{EC} = \frac{\pi^2 E f_{end}}{A \ell_{pill}^2} \times 10^{-4}
\]

where:

\(I \) = net moment of inertia about the weakest axis of the cross section, in cm\(^4\).

\(A \) = net cross sectional area of the member, in cm\(^2\).

\(\ell_{pill} \) = length of the member, in m, taken as:

- For pillar and strut: unsupported length of the member
- For cross tie:
i) in centre tank: distance between the flanges of longitudinal stiffeners on the starboard and port longitudinal bulkheads to which the cross tie's horizontal stringer is attached.

ii) in wing tank: distance between the flanges of longitudinal stiffeners on the longitudinal bulkhead to which the cross tie's horizontal stringer is attached, and the inner hull plating.

$f_{end} = \text{end constraint factor of the pillar. Values of } f_{end} \text{ is given in Table 7:}$

Guidance note:
The end constraint factor, f_{end}, may in other buckling literatures be represented as an effective length factor, k, to the pillar length as following: $f_{end} = k \ell_{pill}$, and gives the following relation between f_{end} and k factors:

\[f_{end} = \frac{1}{k^2} \]

---e-n-d---o-f---g-u-i-d-a-n-c-e---n-o-t-e---

Table 7 End constrain factors.

<table>
<thead>
<tr>
<th>Buckled shape of member</th>
<th>f_{end}</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.0</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>2.0</td>
</tr>
</tbody>
</table>

For cross ties a f_{end} factor of 2.0 to be used.

A pillar end may be considered fixed when brackets of adequate size are fitted. Such brackets are to be supported by structural members with greater bending stiffness than the pillar.

4.3 Elastic torsional buckling stress

The elastic torsional buckling stress, σ_{ET}, in N/mm2, with respect to axial compression of members is to be taken as:

\[
\sigma_{ET} = \frac{G I_{xy}}{f_{pol}^2} + \frac{\pi^2 f_{end} E C_{warp}}{f_{pill}^2} \times 10^{-4}
\]
where:

\[I_{sv} = \text{net St. Venant's moment of inertia, in cm}^4, \text{ see Table 8 for examples of cross sections.} \]

\[I_{pol} = \text{net polar moment of inertia about the shear centre of cross section, in cm}^4 \]

\[I_{pol} = I_y + I_z + A (y_0^2 + z_0^2) \]

\[c_{warp} = \text{warping constant, in cm}^6, \text{ see Table 8 for examples of cross sections.} \]

\[l_{pill} = \text{length of the member, in m, as defined in [4.2].} \]

\[y_0 = \text{transverse position of shear centre relative to the cross sectional centroid, in cm, see Table 8 for examples of cross sections.} \]

\[z_0 = \text{vertical position of shear centre relative to the cross sectional centroid, in cm, see Table 8 for examples of cross sections.} \]

\[A = \text{net cross sectional area, in cm}^2, \text{ as defined in [4.2]} \]

\[I_y = \text{net moment of inertia about y axis, in cm}^4. \]

\[I_z = \text{net moment of inertia about z axis, in cm}^4. \]

4.4 Elastic torsional/column buckling stress

For cross sections where the centroid and the shear centre do not coincide, the interaction between the torsional and column buckling mode is to be examined. The elastic torsional/column buckling stress, \(\sigma_{ETF} \), with respect to axial compression is to be taken as:

\[\sigma_{ETF} = \frac{1}{2 \zeta} \left[\left(\sigma_{EC} + \sigma_{ET} \right) - \sqrt{\left(\sigma_{EC} + \sigma_{ET} \right)^2 - 4 \zeta \sigma_{EC} \sigma_{ET}} \right] \]

where:

\[\zeta = \text{Coefficient taken as:} \]

\[\zeta = 1 - \frac{\left(y_0^2 + z_0^2 \right) A}{I_{pol}} \]

\[y_0 = \text{transverse position of shear centre relative to the cross sectional centroid, in cm, as defined in [4.3].} \]

\[z_0 = \text{vertical position of shear centre relative to the cross sectional centroid, in cm, as defined in [4.3].} \]

\[A = \text{net cross sectional area, in cm}^2, \text{ as defined in [4.2].} \]

\[I_{pol} = \text{net polar moment of inertia about the shear centre of cross section, in cm}^4 \text{ as defined in [4.3].} \]

\[\sigma_{EC} = \text{elastic column compressive buckling stress, as defined in [4.2].} \]

\[\sigma_{ET} = \text{elastic torsional buckling stress, as defined in [4.3].} \]
Table 8 Cross sectional properties

<table>
<thead>
<tr>
<th>Diagram</th>
<th>Formula</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[I_{sv} = \frac{1}{3} \left(2b_f t_f^3 + d_{wt} t_w^3 \right) \times 10^{-4}]</td>
<td>(\text{cm}^4)</td>
</tr>
<tr>
<td></td>
<td>[c_{warp} = \frac{d_{wt}^2 b_f^3 t_f}{24} \times 10^{-6}]</td>
<td>(\text{cm}^6)</td>
</tr>
<tr>
<td></td>
<td>[y_0 = 0]</td>
<td>(\text{cm})</td>
</tr>
<tr>
<td></td>
<td>[z_0 = \frac{0.5d_{wt}^2 t_w}{d_{wt} t_w + b_f t_f} \times 10^{-1}]</td>
<td>(\text{cm})</td>
</tr>
<tr>
<td></td>
<td>[c_{warp} = \frac{b_f^3 t_f^3 + 4d_{wt}^3 t_w^3}{144} \times 10^{-6}]</td>
<td>(\text{cm}^6)</td>
</tr>
<tr>
<td></td>
<td>[I_{sv-n50} = \frac{1}{3} \left(b_{fu} t_f^3 + 2d_{wt} t_w^3 \right) \times 10^{-4}]</td>
<td>(\text{cm}^4)</td>
</tr>
<tr>
<td></td>
<td>[y_0 = 0]</td>
<td>(\text{cm})</td>
</tr>
<tr>
<td></td>
<td>[z_0 = \frac{d_{wt}^2 t_w}{2d_{wt} t_w + b_f t_f} \times 10^{-1} - \frac{0.5d_{wt}^2 t_w}{d_{wt} t_w + b_{fu} t_f} \times 10^{-1}]</td>
<td>(\text{cm})</td>
</tr>
<tr>
<td></td>
<td>[c_{warp} = \frac{b_{fu}^2 d_{wt}^3 t_w (3d_{wt} t_w + 2b_{fu} t_f)}{12(6d_{wt} t_w + b_{fu} t_f)} \times 10^{-6}]</td>
<td>(\text{cm}^6)</td>
</tr>
</tbody>
</table>
\[
L_{SV} = \frac{2bt^3}{3} \times 10^{-4} \quad \text{cm}^4
\]

\[
C_{WARP} = \frac{b^3 t^3}{18} \times 10^{-6} \quad \text{cm}^6
\]

\[
L_{SV} = \frac{1}{3} \left(2b tf^3 + h t_w^3 \right) \times 10^{-4} \quad \text{cm}^4
\]

\[
C_{WARP} = \frac{h^2 b^3 tf (bt_f + 2ht_w)}{12(2bt_f + ht_w)} \times 10^{-6} \quad \text{cm}^6
\]

\[
L_{SV} = \frac{1}{3} \left(b_{f1} tf_{f1}^3 + 2b_{f2} tf_{f2}^3 + b_{f3} tf_{f3}^3 + d_{wt} t_w^3 \right) \times 10^{-4} \quad \text{cm}^4
\]

\[
y_0 = 0 \quad \text{cm}
\]

\[
z_0 = z_s - \frac{(b_{f2} d_{wt} tf_{f2} + 0.5d_{wt}^2 t_w)^{-1}}{d_{wt} t_w + b_{f1} tf_{f1} + 2b_{f2} tf_{f2} + b_{f3} tf_{f3}}
\]

\[
C_{WARP} = \left(L_{f1} z_s^2 + \frac{L_{f2} b_{f1}^2}{200} + L_{f3} \left(\frac{d_{wt}}{10} - z_s \right)^2 \right) \quad \text{cm}^6
\]

\[
L_{f1} = \left(\frac{(b_{f1} - t_{f2})^3}{12} + \frac{b_{f2} t_{f2}^2 b_{f1}^2}{2} \right) \times 10^{-4} \quad \text{cm}^4
\]
<table>
<thead>
<tr>
<th>I_{f2}</th>
<th>$b_f^3 t_f^2 / 12 \times 10^{-4}$</th>
<th>cm4</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{f3}</td>
<td>$b_f^3 t_f^3 / 12 \times 10^{-4}$</td>
<td>cm4</td>
</tr>
<tr>
<td>Z_s</td>
<td>$I_{f3} d_{wt} / (I_{f1} + I_{f3}) \times 10^{-1}$</td>
<td>cm</td>
</tr>
<tr>
<td>I_{sv}</td>
<td>$2\pi r^3 t \times 10^{-4}$</td>
<td>cm4</td>
</tr>
<tr>
<td>C_{warp}</td>
<td>0</td>
<td>cm6</td>
</tr>
<tr>
<td>I_{sv}</td>
<td>$1/2 r^4 \times 10^{-4}$</td>
<td>cm4</td>
</tr>
<tr>
<td>C_{warp}</td>
<td>0</td>
<td>cm6</td>
</tr>
</tbody>
</table>
5 Bars and framework

5.1 Introduction
This chapter treats the buckling of bars and frames. Depending on the loading condition, a bar may be referred to as follows:

Column bar subject to pure compression
Beam bar subject to pure bending
Beam-column bar subject to simultaneous bending and compression.

Buckling modes for bars are categorized as follows (see Figure 3):

Column buckling bending about the axis of least resistance.
Torsional buckling twisting without bending.
Column-torsional buckling simultaneous twisting and bending.
Lateral-torsional buckling of beams simultaneous twisting and bending.
Local buckling local buckling of the plated part of the cross-section (plate-buckling, shell-buckling).

Column buckling may be the critical mode of a slender column with doubly symmetrical cross-section, not susceptible to, or fixed against twisting.

Torsional buckling may be the critical mode of open thin-walled short columns, where the shear centre and the centroid coincide (doubly-symmetrical I-shapes, anti-symmetrical Z-shapes, cruciforms etc.).

Column-torsional buckling may be the critical mode of columns where the shear centre and the centroid not coincide, and thus are torsionally weak (thin-walled open sections).
Lateral-torsional buckling may be the critical mode when a beam is subjected to bending of its strong axis and not braced against bending of the weak axis.

Figure 3 Buckling modes of columns and beams

The buckling mode which corresponds to the lowest buckling load is referred to as the critical buckling mode.

It is assumed that the cross-section of a member under consideration has minimum one axis of symmetry (Z axis). Members with arbitrary cross-sections are subject to special considerations.

The following symbols are used without a specific definition in the text where they appear:

- \(A \) = cross-sectional area, in \(\text{cm}^2 \)
- \(E \) = Young's modulus, in \(\text{N/mm}^2 \)
- \(G \) = shear modulus \(G = \frac{E}{2(1 + \nu)} \), in \(\text{N/mm}^2 \)
- \(I \) = moment of inertia, in \(\text{cm}^4 \)
- \(l_{\text{pill}} \) = length of member, in m.
- \(R_{\text{elH}} \) = minimum yield stress of the considered member, in \(\text{N/mm}^2 \). For built up members, the lowest specified minimum yield stress is to be used.
- \(\nu \) = Poisson's ratio.
- \(\sigma_E \) = minimum elastic compressive buckling stress, in \(\text{N/mm}^2 \), according to [4.2] to [4.4].
- \(\sigma_{cr} \) = characteristic buckling resistance, in \(\text{N/mm}^2 \)
- \(\sigma_{EF} \) = elastic torsional buckling stress, in \(\text{N/mm}^2 \)
- \(\sigma_{EFT} \) = elastic column-torsional buckling stress, \(\text{N/mm}^2 \)
- \(l_p \) = polar moment of inertia about the shear centre, in \(\text{cm}^4 \)
- \(z_o \) = distance from centroid to shear centre along the z-axis.
5.2 Buckling utilisation factor

The allowable buckling utilisation factor, η, for members subjected compression is defined in RU SHIP Pt.3 Ch.8 Sec.1 [3.4] and is given by the following:

$$\eta = \frac{\sigma_{av}}{\sigma_{cr}}$$

σ_{av} = Average axial compressive stress in the member, in N/mm2.

σ_{cr} = Minimum critical buckling stress, in N/mm2.

5.3 Characteristic buckling resistance

The characteristic buckling resistance of a compression member, σ_{cr}, is determined by use of the reduced slenderness, λ.

The reduced slenderness, λ, is defined by:

$$\lambda = \frac{R_{eH}}{\sigma_E}$$

where σ_E is the elastic buckling stress for the actual buckling mode.

A compression member is defined as “stocky” if $\lambda < 0.2$.

A member is considered as “compact” if the reduced slenderness, λ, with respect to local buckling of any part of the member is less than:

— 0.7 for plane parts of the cross section
— 0.5 for curved parts of the cross section

Local buckling of plated structures are given in [2.2].

A compression member which is defined as both “stocky” and “compact” is not susceptible to buckling.

5.4 Non-dimensional buckling curves

Non-dimensional buckling curves are given in Figure 4. σ_{cr} may be obtained by:

If $\lambda \leq \lambda_o$

$$\sigma_{cr} = R_{eH}$$

If $\lambda > \lambda_o$

$$\sigma_{cr} = \frac{1 + \mu + \lambda^2 - \sqrt{(1 + \mu + \lambda^2)^2 - 4\lambda^2}}{2\lambda^2} \cdot R_{eH}$$

where
\[\mu = \alpha (\lambda - \lambda_0) \]
The coefficients \(\alpha \) and \(\lambda_0 \) are given in Table 9.

Table 9 Numerical values of \(\lambda_0 \) and \(\alpha \)

<table>
<thead>
<tr>
<th>Curve</th>
<th>(\lambda_0)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.2</td>
<td>0.20</td>
</tr>
<tr>
<td>b</td>
<td>0.2</td>
<td>0.35</td>
</tr>
<tr>
<td>c</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>e</td>
<td>0.6</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Table 10 defines column curves for commonly used structural sections. Curve “e” applies to lateral-torsional buckling of beams, Figure 4.

![Figure 4 Non-dimensional buckling curves](image)

Figure 4 Non-dimensional bucking curves
Table 10 Buckling curves for different cross section

<table>
<thead>
<tr>
<th>Shape of section</th>
<th>Buckling about axis</th>
<th>Column curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolled tubes</td>
<td>y-y</td>
<td>a</td>
</tr>
<tr>
<td>Welded tubes (hot finished)</td>
<td>y-y</td>
<td></td>
</tr>
<tr>
<td>Welded box sections</td>
<td>y-y</td>
<td>b</td>
</tr>
<tr>
<td>Heavy welds (full penetrations) and b/t < 30</td>
<td>y-y</td>
<td>c</td>
</tr>
<tr>
<td>I and H rolled section</td>
<td>h/b > 1.2</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>y-y</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>z-z</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h/b < 1.2</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>y-y</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>z-z</td>
<td></td>
</tr>
<tr>
<td>I and H welded sections</td>
<td>Flame cut flanges</td>
<td>y-y</td>
</tr>
<tr>
<td></td>
<td>z-z</td>
<td>b</td>
</tr>
<tr>
<td>I and H sections with</td>
<td>Rolled flanges</td>
<td>y-y</td>
</tr>
<tr>
<td>welded flange cover plates</td>
<td></td>
<td>z-z</td>
</tr>
<tr>
<td>t=t_{max}</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>Box sections, stress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>relieved by heat treatment</td>
<td>y-y</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>z-z</td>
<td></td>
</tr>
<tr>
<td>I and H sections, stress</td>
<td></td>
<td>y-y</td>
</tr>
<tr>
<td>relieved by heat treatment</td>
<td></td>
<td>z-z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b</td>
</tr>
<tr>
<td>T and L sections</td>
<td></td>
<td>y-y</td>
</tr>
<tr>
<td>y-y: d</td>
<td></td>
<td>c</td>
</tr>
<tr>
<td>z-z: t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channels</td>
<td>y-y</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>z-z</td>
<td></td>
</tr>
</tbody>
</table>
5.5 Members exposed to pure axial compression (columns)

For members exposed to axial loads only and not susceptible to local buckling, the elastic buckling stress, \(\sigma_E \), for column buckling, torsional buckling and torsional/column buckling as given in [4.2], [4.3] and [4.4] are to be considered.

5.6 Members exposed to pure bending (beam)

A beam which is subjected to bending about its strong axis (y-axis) and not restrained against buckling about the weak axis (z-axis) may fail into lateral-torsional buckling mode, see Figure 3. The failure mode is governing when the compression stress reaches a critical value, \(\sigma_{bcr} \).

The usage factor for members subjected to pure bending is defined by:

\[
\eta = \frac{\sigma_b}{\sigma_{bcr}}
\]

\(\eta \) = allowable utilisation factor given in RU SHIP Pt.3 Ch.8 Sec.1 [3.4]
\(\sigma_b \) = effective axial stress due to bending.

\(\sigma_{bcr} \) is represented by curve “e” in Table 9, and reduced slenderness for lateral-torsional buckling, \(\lambda_v \), is defined as following:

\[
\lambda_v = \sqrt[\frac{R_{EH}}{\sigma_{EV}}}\\
\]

\(s_{EV} \) = Elastic lateral-torsional buckling stress

\[
= f_{end} \frac{\pi^2 EI_z c}{Z_{yc} l_{pill}^2}\\
\]

\(l_{pill} \) = unsupported length of the member as given in [4], in m.
\(Z_{yc} \) = section modulus with respect to compression flange, in cm³
\(I_z \) = moment of inertia, in cm⁴, about the weak axis, in cm⁴
\(c \) = parameter depending on geometric proportions, bending moment distribution and position of load with respect to the neutral axis.
\(f_{end} \) = end constraint factor as given in [4.2].

For a beam with constant bending moment (bending moments applied at the ends):

\[
c = \left[\frac{C_{warp} l_pill^2}{l_z I_z} \right]^{0.5} + \frac{l_pill^2}{l_z 2\pi^2 (1 + v)}\\
\]

\(C_{warp} \) = warping constant, in cm⁶
\[I_{sv} = \text{St. Venant torsional constant, in cm}^4. \]

The parameters \(C_{warp} \) and \(I_{sv} \) are given in Table 8 for commonly used cross sections.

For doubly-symmetrical H- and I-shape sections where \(\sigma_{EV} \approx \sigma_E, I_{sv} = 0 \) and \(Z_{yc} = Ah_w/2 \), \(\sigma_{EV} \) may be taken as:

\[\sigma_{EV} = f_{end} \frac{\pi^2 EI_{zc} h_w}{Z_{yc} l_{pill}^2} \]

\(I_{zc} \) = moment of inertia of the compression flange (for doubly-symmetrical H- and I-shape sections \(I_{zc} = I_z/2 \))

\(h_w \) = web height.

Lateral-torsional buckling need not be considered if:

\[\lambda_v < 0.6, \text{ or if } l_{pill} < l_{eo} \]

\[l_{eo} = 0.55 b_f \frac{A_c h_w E}{Z_{yc} R_{eh}} \]

\(l_{pill} \) = unsupported length of member, in m

\(A_c \) = cross sectional area of compression flange, in cm²

\(b_f \) = width of compression flange, in m.

5.7 Members exposed to axial load and bending (beam-columns)

The usage factor for members subjected to both compression and bending may be taken as:

\[\eta = \frac{\sigma_a}{\sigma_{acr}} + \frac{\sigma_b}{\sigma_{bcr}} \]

\(\sigma_a \) = Axial stress due to compression.

\(\sigma_b \) = Effective axial stress due to bending.

Bending about weak (\(z \)-axis) or strong axis (\(y \)-axis) see options for \(\sigma_{bcr} \).

For compression members which are braced against joint translation, \(\sigma_b \) is the maximum bending stress within the middle third of the length of the member, see Figure 5.

\(\sigma_{acr} \) = Characteristic buckling stress for axial compression as defined in [5.5].

\(\sigma_E \) = Minimum elastic buckling stress about weak axis (\(z \)-axis).

\(\sigma_{bcr} \) = Characteristic buckling stress for pure bending as defined in [5.6]. If bending about weak axis (\(z \)-axis) then \(\sigma_{bcr} = R_{eh} \).

For doubly symmetrical H- and I-shape and rectangular box sections which are subjected to simultaneous axial compression and bending about both axes, the usage factor may be taken as:
\[\eta = \frac{\sigma_d}{\sigma_{acr}} + \frac{\sigma_{by}}{\left(1 - \frac{\sigma_d}{\sigma_E}\right)\sigma_{bcr}} + \frac{\sigma_{bz}}{\left(1 - \frac{\sigma_d}{\sigma_E}\right)R_{eh}} \]

\(\sigma_{by}\) = effective axial stress due to bending about strong axis (y-axis).
\(\sigma_{bz}\) = effective axial stress due to bending about weak axis (z-axis).

Figure 5 Effective bending stress for beam-columns

The allowable utilisation factor, \(\eta\), is defined in RU SHIP Pt.3 Ch.8 Sec.1 [3.4].

When the buckling analyses of a beam-column is carried out by use of the effective bending stress, \(\sigma_d\), it is in addition necessary to check the beam with respect to yield at the position of maximum bending stress.

5.8 Overall buckling of built-up members

A built-up member assumed to be composed of two or more sections (chords) and intermittent transverse connecting elements (bracings), see Figure 6. It is assumed that all connections are welded.
Figure 6 Built-up compression member

Overall buckling of a built-up member corresponds to column buckling of a homogeneous member as given in [5.5]. The column buckling must take into account the shear stiffness factor into the elastic buckling stress as following:

$$\sigma_{Em} = \frac{\pi^2 E}{(1 + \omega) k^2}$$

Elastic buckling stress for the built-up member, where;

$$\omega = 2\pi^2(1 + \nu) \frac{l}{l_m A_Q}$$

Shear stiffness modification factor of the built-up member

- A = cross sectional area for the built-up member, see Table 12
- A_Q = effective shear area for the built-up member, see Table 11 and Table 12
- I = moment of inertia of the built-up member, see Table 12
- l_m = effective length of the built-up member

In addition to the overall buckling control, it is required to check the buckling capacity of each single element in the built-up member.

If the characteristic buckling stress of a single chord element is less than the yield stress, the overall buckling analysis of the built-up member is to be based on a reduced yield stress equal to the characteristic buckling stress of the chord element.

Bracing members in the built-up member, see Figure 6, shall be designed for an overall shear force, Q_d, given by:

$$Q_d = Q + Q_o$$

where Q is the overall shear force in the built-up member due to design loading and Q_o is the local shear force in each leg defined by:
\[Q_o = \pi \frac{P}{P_E - P} \sqrt{\frac{f_{\text{end}}}{l_{pil}}} \cdot M_{\text{max}} \cos \sqrt{\frac{f_{\text{end}}}{l_{pil}}} \cdot \pi x \]

- \(P \) = average axial force in each leg
- \(P_E \) = Elastic buckling force for the beam column
- \(M_{\text{max}} \) = maximum 1st order bending moment i.e. due to:
 - lateral load
 - eccentric axial load
 - initial deformation, out of straightness
- \(x \) = distance from zero bending moment.

Table 11 Equivalent shear area of plane built-up members.

<table>
<thead>
<tr>
<th>Build-up member</th>
<th>Equivalent shear area</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Diagram 1]</td>
<td>[A_Q = \frac{(1+\nu)sh^2}{d^3 + \frac{s^3}{2A_D} + \frac{s^3}{3A_C}}]</td>
</tr>
<tr>
<td>![Diagram 2]</td>
<td>[A_Q = \frac{(1+\nu)sh^2}{d^3 + \frac{h^3}{8A_D} + \frac{s^3}{12A_C}}]</td>
</tr>
<tr>
<td>![Diagram 3]</td>
<td>[A_Q = \frac{(1+\nu)sh^2}{d^3 + \frac{s^3}{12A_C}}]</td>
</tr>
</tbody>
</table>
Table 12 Cross section properties of three-dimensional built-up members.

<table>
<thead>
<tr>
<th>Build-up member type</th>
<th>Equivalent shear area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A = 3A_{CI})</td>
</tr>
<tr>
<td></td>
<td>(A_{Qy} = A_{Qz} = \frac{3}{2} \cdot A_{Qi})</td>
</tr>
<tr>
<td></td>
<td>(I_y = I_z = \frac{3}{2} \cdot A_{CI} \cdot h^2)</td>
</tr>
<tr>
<td></td>
<td>(I_T = \frac{1}{4} \cdot A_{Qi} \cdot h^2)</td>
</tr>
</tbody>
</table>
6 Spherical Shells

6.1 Introduction

This chapter handled buckling of un-stiffened spherical shells and dished end closures.

The following symbols are used without a specific definition in the text where they appear:

\[A = 4A_{Cl} \]

\[A_{Qy} = A_{Qz} = 2 \cdot A_{Qi} \]

\[I_y = I_z = A_{Cl} \cdot h^2 \]

\[I_T = A_{Qi} \cdot h^2 \]
6.2 Stresses

Spherical shells are usually designed to resist lateral pressure. For a complete spherical shell subjected to uniform lateral pressure the state of stress is defined by the principal membrane stresses, σ_1 and σ_2, defined by:

$$\sigma_1 = \sigma_2 = \frac{Pr}{2t}$$

For the spherical shell segment shown in Figure 7, the meridional membrane stress is given by:

$$\sigma_\phi = \frac{Pr \sin(\phi + \alpha) \sin(\phi - \alpha)}{2t (\sin \phi)^2} + \frac{N}{2\pi rt (\sin \phi)^2}$$

The circumferential membrane stress is given by:

$$\sigma_\theta = \frac{Pr}{t} - \sigma_\phi$$

If the axial force, N, is due to end pressure alone, the stresses are given by:

$$\sigma_\phi = \sigma_\theta = \frac{Pr}{2t}$$

These equations are only valid if the edges are reinforced. If the axial force is due to end pressure only, the net cross-sectional area of the reinforcement as:

$$A = \frac{\sin 2\alpha}{2(1-v)} rt$$

![Figure 7 Spherical shell segment](image-url)
6.3 Shell buckling, general

Buckling of an unstiffened spherical shell occurs when the largest compressive principal membrane stress, \(\sigma_1 \), reaches a critical value, \(\sigma_{cr} \). The critical stress may be taken as:

\[
\sigma_{cr} = \frac{R_{eh}}{\sqrt{1 - \psi + \psi^2 + \lambda^4}}
\]

where

- \(\psi = \frac{\sigma_1}{\sigma_2} \) stress ratio \((-1 \leq \psi \leq 1)\)
- \(\lambda = \frac{R_{eh}}{\sqrt{\sigma_E}} \) reduced slenderness
- \(\sigma_1 \) = largest compressive principal membrane stress
- \(\sigma_2 \) = principal membrane stress normal to \(\sigma_1 \) (compressive or tensile)

The allowable buckling utilisation factor for spherical shell is defined by:

\[
\eta = \frac{\sigma_1}{\sigma_{cr}}
\]

The allowable buckling utilisation factor, \(\eta \), is given in RU SHIP Pt.3 Ch.8 Sec.1 [3.4].

The elastic buckling stress \(\sigma_E \) may be taken as:

\[
\sigma_E = 0.606 \rho E^t r
\]

In lieu of more detailed information \(\rho \) may be taken as:

\[
\rho = \frac{0.5}{\sqrt{1 + \frac{1}{100(3 - 2\psi)t}}}
\]

For a complete sphere subjected to uniform external pressure the stress ratio is \(\psi = 1 \), and the expressions given above for \(\sigma_{cr} \) and \(\rho \) may be taken as:

\[
\sigma_{cr} = \frac{R_{eh}}{\sqrt{1 + \lambda^4}}
\]
6.4 Buckling of dished ends convex to pressure

Hemispherical ends are to be designed as a complete sphere under uniform pressure.

Torispherical ends are to be designed as a complete sphere with radius equal to the crown radius. The thickness should not be less than 1.2 times the thickness required for a structure of the same shape subjected to maximum internal pressure.

Ellipsoidal ends are to be designed as a complete sphere with radius equal to \(r^2/H \), where \(H \) is the short axis and \(r \) is the long axis of the ellipsoid. The thickness should not be less than 1.2 times the thickness required for a structure of the same shape subjected to maximum internal pressure.

\[
\rho = \frac{0.5}{\sqrt{1 + \frac{r}{t} \cdot \frac{1}{100}}}
\]
SECTION 4 SEMI-ANALYTICAL BUCKLING MODELS (PULS)

1 General

PULS is a computerized buckling code recognized by DNV GL and IACS for strength assessment of stiffened thin plate elements as used in ship and offshore structures.

The code is based on a direct semi-analytical approach using a recognized non-linear plate theory which is capable of predicting both the elastic buckling limit (eigenvalues) and the post-buckling behaviour up to the ultimate strength limit.

Several types of elements are available and they are all implemented into an easy and intuitive stand-alone software (Visual Basic Advanced Viewer (AV) interface). The two basic plate elements (U3, S3) are also available in Excel format and as automatic code checks in DNV GL's NAUTICUS Hull/GeniE programs.

2 Objective

The code is developed and tailor-made for the purpose of doing fast buckling and ultimate strength assessments of local stiffened panels with an accuracy close to what is available using more advanced non-linear FE tools. The elements available covers the same structural layout as more standard closed formed formulas (CFM, Sec.3), i.e. regular stiffening arrangements etc., but have some extra features. Special elements coping with non-regular stiffening and corrugations are also included in the library.

By applying directly a non-linear plate theory additional information are available which will give the user some insight and understanding of the failure mechanisms, i.e. the weakest failure mode, stress redistribution patterns etc. using available 3D graphics of buckling deflections etc.

The approach has the same theoretical basis as used non-linear FE programs, which means that the results have focus on concepts such as load bearing capacities, elastic buckling (eigenvalues), plate deformations at collapse etc. For the purpose of code checking the results are transformed to concepts such as usage factors and buckling modes which designers and approval engineers are familiar with from Rules.

3 Theory fundamentals

3.1 General

The buckling models can be classified as semi-analytical in the sense that they are based on a recognized non-linear plate theory in combination with a Rayleigh-Ritz discretization’s of the deflections. The latter imply global trigonometric functions over the plate and stiffener surfaces and by using sufficiently many terms in the series, relatively complex deflection shapes such as inclined shear buckling patterns etc. can be described. For problems which can be analysed with using few or only a single degree of freedom, the buckling and post-buckling behaviour resemble classical analytical solutions found in the literature and standard textbooks such as found in /1/ and /2/.

The set of non-linear equilibrium equations are derived based on energy methods and they are solved using an incremental numerical perturbation scheme with arc length control. The equivalent von Mises yield stress in hot spot locations is controlled against the material yield condition for each load step along the equilibrium path and used as indicators for when the ultimate strength limit is reached.

The fundamental non-linear plate theory including initial curvature was first published by Marguerre /3/. More details on the fundamental stability theory and incremental perturbation approach used for solving the non-linear equilibrium equation can be found in /4/.

The different buckling models are documented in series of publications /5-16/.
3.2 Basic theory

The theory is given detailed treatment elsewhere, so only some of the basics are given here. The fundamental is the non-linear plate theory due to Marguerre formulating first the well known kinematic and compatibility equations for plates with geometrical imperfections i.e. the membrane strain-displacement relations are

\[\varepsilon_{11} = u_{1,1} + \frac{1}{2} w_{1,1}^2 + w_{1} w_{0,1} \]
\[\varepsilon_{22} = u_{2,2} + \frac{1}{2} w_{2,2}^2 + w_{2} w_{0,2} \]
\[\varepsilon_{12} = \frac{1}{2} (u_{1,2} + u_{2,1}) + \frac{1}{2} (w_{1,2} w_{2,2} + w_{1} w_{0,2} + w_{2} w_{0,1}) \]

(1)

The corresponding compatibility equation reads

\[(\nabla^4 F = E[w_{1,12} w_{2,22} + 2 w_{0,12} w_{1,12} - w_{0,11} w_{2,22} - w_{0,22} w_{1,11}]) \]

(2)

The \(\varepsilon_{\alpha \beta} \) are the membrane strain tensor, \(u_{\alpha \beta} \) the in-plane displacement gradients and \(w_{\alpha \alpha}, w_{\alpha \beta}, w_{0,\alpha}, w_{0,\beta} \) the additional and initial out-of plane plate deflection gradients respectively (\(\alpha, \beta = 1,2 \)). \(F \) is the Airy’s stress function.

Energy methods

The equilibrium equations are derived using energy principles, i.e. a virtual work or potential energy approach whichever is most convenient. The most general is a virtual work approach written on total form as

\[\int_{V} \sigma_{\alpha \beta} \delta \varepsilon_{\alpha \beta} = \delta E \]

(3)

The left side is the internal virtual work over the volume \(V \) and the right side is the external virtual work (\(\delta E \)) done by the external forces. The subscript summation convention is used here for convenience where the Greek letters runs over 1, 2.

For derivation of equilibrium equations on incremental form (1\(^{\text{th}}\) order perturbation rate) the corresponding virtual work equation is derived as

\[\int_{V} \sigma_{\alpha \beta} \delta \varepsilon_{\alpha \beta} + \int_{V} \sigma_{\alpha \beta} \delta \varepsilon_{\alpha \beta} = \delta E \]

(4)

Here a dot over the symbol symbolize incremental properties (1\(^{\text{th}}\) order rates in a perturbation approach)
Discretizations of buckling deflections

In the present Rayleigh-Ritz semi-analytical approach the lateral buckling deflections w due to applied loads and initial stress free geometrical imperfections w_0 are discretized by double Fourier series ($i, j = 1, 2, \ldots, N$).

$$w = qf_i(x_1, x_2) = \sum_{m} \sum_{n} A_{mn} \sin\left(\frac{m \pi}{a} x_1\right) \sin\left(\frac{n \pi}{b} x_2\right) \quad (5)$$

$$w_0 = q_0f_i(x_1, x_2) = \sum_{m} \sum_{n} A_{mn}^0 \sin\left(\frac{m \pi}{a} x_1\right) \sin\left(\frac{n \pi}{b} x_2\right)$$

For convenience of notation the set of unknown Fourier parameters A_{mn} (A_{mn}^0) are given whenever practical the single subscript notation q_i (q_0) where the Latin subscript letters i, j runs from 1 to N where N is the total number of degrees of freedom. This means that the rates of the deflection coefficient parameters A_{mn} (or q_i) with respect to the arc length variable η are the unknown parameters. The rates are given the symbol \dot{A}_{mn} (or \dot{q}_i) etc., i.e. a dot above the symbol indicates an incremental property.

Numerical approach solving equilibrium equations

The first order perturbation expansion provides a linearized set of N equations in $N+1$ unknowns (N deflection parameters + one load parameter),

$$K_{ij} \dot{q}_j + G_{i\Lambda} \dot{\Lambda} = 0 \quad i, j = 1, 2, \ldots, N \quad (6a)$$

The last equation is based on the definition of the arc length parameter η and gives a single quadratic equation in the unknown rate coefficients (e.q. 6b). Summarized the final set of first order (linear) algebraic equations are compactly written as

$$K_{ij} \dot{q}_j + G_{i\Lambda} \dot{\Lambda} = 0 \quad i, j = 1, 2, \ldots, N \quad (6a)$$

$$\dot{q}_i \dot{q}_i + \dot{\Lambda}^2 = 1 \quad (6b)$$

Here K_{ij}, $G_{i\Lambda}$ are the state dependent geometrical stiffness matrix and incremental load vector, respectively. The \dot{q}_i’s are the unknown deflection rate parameters and $\dot{\Lambda}$ is the load rate respectively. The solution for deflections and load parameter in state $s+1$ can be written as a Taylor series expanded around state s, i.e. mathematically written as
The Latin letter s as subscript on the variables indicates a general state s, index $s+1$ the next neighbouring state $s+1$ and $\Delta \eta$ is the incremental prescribed arc length parameter between the two states. The approach implies that the non-linear equilibrium path is traced solving the equilibrium equations in an incremental scheme. The parameter rates (\dot{A}_{ij}, \dot{A}) in state s are directly used for finding deflections and the loads for the next state $s+1$. Moreover, only the first order rates in the perturbation expansion are used since a very small value of the incremental perturbation parameter $\Delta \eta$ is assumed. It is generally found that $\Delta \eta \approx 0.01$ gives sufficiently accurate solutions for practical applications implying in the range of 50 to 100 steps along up to the ultimate capacity. The incremental approach is illustrated in Figure 1.

\begin{equation}
q_{1,s+1} = A_{11,s+1} = A_{11,s} + \dot{A}_{11,s} \Delta \eta + ...
q_{2,s+1} = A_{12,s+1} = A_{12,s} + \dot{A}_{12,s} \Delta \eta + ...
\vdots
\nonumber
\Lambda_{s+1} = \Lambda_s + \dot{\Lambda}_s \Delta \eta + ...
\end{equation}

Figure 1 Incremental solution algorithm stepping along a non-linear equilibrium path; ultimate load

By checking the redistributed stress pattern against the von Mises yield criterion in critical locations inside the panel and along plate edges the localized critical stresses is under control at each load step. When the “first major onset” of material yield is reached the incremental loading is stopped and the corresponding total load is defined as the ultimate capacity.
Using the present approach the ultimate capacity is expected to be on the conservative side, i.e. some more capacity may be expected for stocky sections in particular, but at the expense of some plastic redistribution of stresses and possibly some minor permanent sets.

3.3 Load history

The approach can handle any general load history path defined in load space (or displacement space) as illustrated in Figure 2.

![Figure 2 Load history: Schematically illustration of load paths in load space crossing buckling (ultimate) strength boundary](image)

The most general case is a continuous turning and twisting path in load space which can be approximated as a multi-linear path using sufficiently small steps by using a single load factor \(LF = \Lambda \) with value ranging from 0 to unity (1) for each "linear load step" in load space, i.e.

\[
\begin{align*}
\sigma_1 &= \sigma_{1,m} + \Lambda (\sigma_{1,m+1} - \sigma_{1,m}) \\
\sigma_2 &= \sigma_{2,m} + \Lambda (\sigma_{2,m+1} - \sigma_{2,m}) \\
&\vdots \\
\sigma_K &= \sigma_{K,m} + \Lambda (\sigma_{K,m+1} - \sigma_{K,m})
\end{align*}
\]

The subscript \(m \) indicates the load reference value for point \(m \) in load space for load \(s_i \) etc. The general load history above is not very practical as detailed information on real load-histories is not available or not known for a given case. Thus no more discussion of this general case is given here.

A more practical case is to assume a single step proportional loading history, i.e. all in-plane loads are scaled in the same proportion from zero load until buckling or collapse is identified. Mathematically written all external loads \(\sigma_1, \sigma_2, \ldots, \sigma_K \) are scaled in the same proportion in relation to a load reference level (0 as subscript), i.e.
For a basic case of stiffened panel/girder structure the component \(\sigma_1 \) is typically the axial load, \(\sigma_2 \) the transverse load acting perpendicular to \(\sigma_1 \) and \(\sigma_3 \) is in-plane shear stress.

The proportional load concept compares to a convenient usage factor measure as used in buckling codes, rules etc., see [3.4]. The case of a single fixed pre-load is discussed below (\(p=p_{\text{fixed}} \); ex. ship bottom panel subjected to lateral sea pressure and hull girder longitudinal stresses).

3.4 Margins to collapse - usage factor

For proportional loadings the non-linear solution algorithm identifies the value of load parameter \(\Lambda \) to be \(\Lambda_u \) at the ultimate capacity limit. The corresponding ultimate strength values of the external loads are accordingly

\[
\begin{align*}
\sigma_{1u} &= \Lambda_u \sigma_{10} \\
\sigma_{2u} &= \Lambda_u \sigma_{20} \\
\vdots \\
\sigma_{Ku} &= \Lambda_u \sigma_{K0}
\end{align*}
\]

(7)

The ultimate capacity factor \(\Lambda_u \) is directly a measure of the safety margin against collapse. The inverse of this factor is the actual usage factor commonly used in Ship Classification rules, i.e.

\[
\eta_{\text{actual}} = \frac{1}{\Lambda_u} = \frac{\sqrt{\sigma_{10}^2 + \sigma_{20}^2 + \cdots + \sigma_{K0}^2}}{\sqrt{\sigma_{1u}^2 + \sigma_{2u}^2 + \cdots + \sigma_{Ku}^2}}
\]

(8)

The concept of usage factor is illustrated schematically in load space \((\sigma_1, \sigma_2, \sigma_3) \) in Figure 3. The design loads (reference load) corresponds a load factor of \(\Lambda = 1 \).
Figure 3 Ultimate Capacity failure surface in load space. Proportional load history - definition of usage factor η_{actual}

The same concept can be used for the case of having one “fixed” (pre-) load component while the rest of the load parameters are scaled to collapse. An example of such a case is a bottom panel in a ship hull for which the acting sea pressure is constant while the longitudinal hull girder stress, being the integrated effect along the ship length, varies more and thus the natural load to be scaled to collapse. The loading history is illustrated schematically in two steps, see Figure 4.

1. step 1) Lateral pressure p increased to p_{fixed} while in-plane stress σ_1 kept at zero
2. step 2) $p = p_{\text{fixed}}$ kept as fixed value, while σ_1 is increased to collapse through ref stress σ_{10}

Figure 4 Schematically illustration of load history; one fixed load (pre-load) and one load scaled to collapse

This load history can be compactly written as
For such a case it is convenient to define two usage factors, i.e. one measuring the margin to buckling (ultimate) collapse limit, i.e.

\[
\sigma_{1u} = \Lambda_u \sigma_{10}
\]
\[
\sigma_{2u} = \Lambda_u \sigma_{20}
\]
\[
\vdots
\]
\[
\sigma_{Ku} = \Lambda_u \sigma_{K0}
\]
\[
P = P_{\text{fixed}}
\]

and the other measuring the margin to the maximum (yielding) pressure capacity

\[
\eta_{\text{actual}}^{\text{buckling}} = \frac{1}{\Lambda_u} \left(\frac{\sqrt{\sigma_{10}^2 + \sigma_{20}^2 + \cdots + \sigma_{K0}^2}}{\sqrt{\sigma_{1u}^2 + \sigma_{2u}^2 + \cdots + \sigma_{Ku}^2}} \right)
\]

\[
\eta_{\text{actual}}^{\text{pressure}} = \frac{P_{\text{fixed}}}{P_{\text{capacity}}}
\]

It is illustrative to show these two usage factors in the load space together with buckling/collapse and other design (yielding) limit surfaces, see Figure 5.

Figure 5 Definition of usage factors for case (e.g. stiffened panel in ship hull) with one pre-load and one variable load.
For panels subjected mainly to in-plane compressive loads a clear ultimate value (peak) is identified in load space and it follows that the buckling usage factor η_{buckling} has unique definition. This ultimate strength limit then includes the possible knock down effect of lateral pressure on the in-plane load bearing capacity. For stiffened panels, as used in ship structures, this knock down effect is moderate, i.e. in the range of 5 to 10% for pressures up to say 0.2 - 0.4 MPa is typical.

For panels subjected to predominantly lateral pressure the characteristic behaviour is that no distinct ultimate capacity is identified i.e. the pressure can seemingly be increased beyond any reasonable limit. This is mainly due to the capability of plates to develop significant non-linear membrane stretching and develop large strains. The final failure mode will be controlled by localized large plastic straining in plates and stiffeners and involve fracture/material cracking due to tension stresses rather than buckling. The lateral pressure levels at which such failure limits are reached are far beyond normal design limits and thus not of practical value. Thus simple "design" cut-offs are introduced for ensuring robust and solid stiffeners and plating. These cut-offs are typical limiting the stresses in the stiffeners at support (bending and shear) to be less than the yield stress. The purpose is to limit the possibility of permanent sets and damages.

They are similar in form as Rule minimum requirements to stiffener section modulus Z. The Rule criteria will overrule the present PULS cut-off criteria if otherwise not agreed with Society.

It is also worth noting that stiffened panels in ships are hanging on girder/bulkhead structures and the lateral pressure is transferred into these elements. Thus, the focus will normally be to ensure sufficient shear area in the girder webs to avoid local high stresses and possibly local plastic buckling damages here. Such local web girder checks are not part of the buckling codes or the present PULS models.

4 Elements and their validity

4.1 General

The current element library count four (4) different structural elements

1) U3; unstiffened rectangular plate
2) S3; uni-axially or orthogonally stiffened rectangular plate
3) T1; non-regular stiffened plate
4) K3; symmetric trapezoidal open corrugation.

A brief description of each of these elements is given in the following with some recommendations for practical use with limitations.

Details on validity limits, outside which the semi-analytical buckling models are not valid, are given in the User’s manual /17/. These validity limits are similar to the Rules slenderness requirements in RU SHIP Pt.3 Ch.8 Sec.2 but generally more relaxed as they represent the theoretical limits of the semi-analytical models and not practical design limits. Thus rules max slenderness requirements overrules the PULS limits.

4.2 Unstiffened regular plate; U3

The unstiffened plate model (U3) is single-bayed and applicable for plates where the edges are known to have rigid support in the lateral direction, Figure 6.

The element assesses elastic buckling (eigenvalues) as well as non-linear post-critical strength and the ultimate capacity.

Rotational boundary support can be varied from simply supported to fully clamped using rotational springs.

Two in-plane boundary restraints are available

a) Integrated plating. The edges forced to be on a straight line (method A)
b) Girder panel. The unloaded plate edges are free to pull in (method B).
The in-plane loads can be uniform or linearly varying along the edges while they are assumed to be constant in the direction they act, i.e. the in-plane loads goes directly through the plate. Any combination bi-axial stresses in compression or tension combined with in-plane shear stresses can be used.

Lateral pressure effects can be simulated but for a single-bay panel this is not a very practical case. In ship hull structures the panels are integrated across many bays and the symmetric deflection pattern imposed by the lateral pressure is not considered in single-bayed models. This limits the practical usefulness of this feature of combined in-plane loads and lateral pressure. It may be interesting for special cases.

The ultimate capacity prediction is consistent with normal production tolerances used by yards and builders.

Figure 6 PULS unstiffened plate model (U3) – buckling mode for linearly varying loads in x_1 direction.

4.3 Uni-axially or orthogonally stiffened regular plate;S3

The regularly stiffened plate model (S3) is multi-bayed and assume the outer plate edges to have rigid support in the lateral direction as typical for panels framed inside a rigid girder/floor in hull structures, Figure 7. The stiffening system may be uni-directional or orthogonal, with the continuous plating and primary stiffeners as the main load bearing elements. Secondary stiffeners running perpendicular to the primary direction act as buckling stiffeners.

The element assesses elastic buckling (eigenvalues) as well as non-linear post-critical strength and the ultimate capacity.

Two in-plane boundary restraints are available

a) Integrated plating. The edges forced to be on a straight line (method A)
b) Girder panel. The unloaded plate edges are free to pull in (method B).

The in-plane loads is uniform in the primary stiffener direction while can vary or linearly in the orthogonal direction. The in-plane shear loads are constant across the panel. Any combination bi-axial stresses in compression or tension combined with in-plane shear stresses can be used.

Uniform lateral pressure can be simulated and is assumed constant across several bays in all bay directions. The lateral pressure is carried by the primary stiffeners. The lateral pressure amplifies the local plate deflections between primary stiffeners and it is modelled as an extra imperfection on top production model imperfection.

A code constraint is introduced preventing overall buckling (out-of the plate plane) of the primary stiffeners. This is implemented as a cut-off at the global elastic buckling load (GEB eigenvalue) and should ensure robust stiffeners supporting the plating.

The failure of the panel will generally be visualized as a hybrid mix of buckling modes in plating and stiffeners, one more dominating than others depending on geometrical layout and loading type. For this element the failure modes is split in four (4) categories consistent with prescriptive rules notation.
1) Plate buckling between stiffeners (plate buckling) \(x\%\)
2) Lateral buckling of primary stiffener (global/overall buckling) \(y\%\)
3) Sideways buckling of stiffener top (torsional buckling) \(z\%\)
4) Local buckling of stiffener web (web buckling) \(xy\%\)

SUM

\[100\%\]

Using this element for buckling control implies an integrated check of all failure modes and load shedding between plating and primary stiffeners is coped with. There is thus no need to check plate buckling (U3) in addition. This is a principal difference to the CFM approach.

Note that load shedding to neighbouring girders/floors outside the actual S3 model (running in \(x_2\)-direction) is a separate issue as discussed in App.A \[1.4\].

The ultimate capacity prediction is consistent with normal production tolerances used by yards and builders.

![Figure 7 PULS regularly stiffened plate model (S3) - buckling mode for in-plane shear stress.](image)

4.4 Non-regular stiffened plate; T1

The non-regularly stiffened plate model (T1) is single-bayed and assume the outer plate edges to have rigid support in the lateral direction, Figure 8. The stiffening system may be arbitrary oriented and stiffeners with different proportions running in different directions can be modelled. The stiffeners are modelled as secondary buckling stiffener and have to be proportioned such that local buckling of their web or flange is not possible. This is ensured by setting reasonable slenderness requirements.

The element assesses elastic buckling (eigenvalues) and plasticity correction is included for buckling strength assessment in the moderate to low slenderness range. The model apply a linearized version of the present plate buckling theory meaning the loads beyond the elastic buckling level (eigenvalue) is not possible.

Rotational boundary support can be varied from simply supported to fully clamped using rotational springs. A stiffener has by default no rotational stiffness but rotational springs can be modelled along the plate/stiffener junction line.

The in-plane loads can vary linearly in both directions while the in-plane shear loads are constant across the panel. Any combination bi-axial stresses in compression or tension combined with in-plane shear stresses can be used.

The buckling capacity prediction is consistent with normal production tolerances used by yards and builders. Relevant areas for application can be web plating on girders/brackets etc. in fore or aft ship where the layout of plating and stiffeners is non-regular.
4.5 Open corrugated trapezoidal panel; K3
The corrugated plate model (K3) is single-bayed and assume the outer plate edges to have rigid support in the lateral direction. The corrugation is open and has a regular symmetric trapezoidal shape as typical for bulkheads in ship hulls, Figure 9.

The element assesses elastic buckling (eigenvalues) as well as non-linear post-critical strength and the ultimate capacity. Buckling failure modes cover local flange, local web buckling and overall (global) panel buckling.

Rotational boundary support across the corrugation height (h_w) can be varied from simply supported to fully clamped using rotational springs.

The in-plane stress is uniform in the axial direction and the in-plane shear loads are constant across the panel. Any combination of axial and in-plane shear stresses can be modelled. Stresses perpendicular to the corrugation are in practise very low and not a parameter for buckling assessment.

Uniform lateral pressure can be simulated and can be varied linearly across the length of the corrugation. The lateral pressure is carried by the corrugation in bending and out-of-plane shear.

The load input can be either taken from a linear FE analyses of the corrugation bulkhead (e.g. FE cargo hold model) or directly as edge loads and lateral pressure (simplified).

The ultimate capacity prediction is consistent with normal production tolerances used by yards and builders.

4.6 FRP Composite plate buckling element – C1
An unstiffened FRP composite plate buckling model (C1) is available for plates where the edges have rigid support in the lateral direction.
The plate can be built up of many equal FRP layers, each layer can have different angle orientation of orthotropic material properties E_1, E_2, ν_{12} and G_{12}. Thus any anisotropic plate can be assessed wrt elastic buckling limit as well as first material failure.

The element assesses elastic buckling (eigenvalues) in combination with material failure according to Tsai – Wu criteria.

Rotational boundary support can be varied from simply supported to fully clamped using rotational springs.

The in-plane loads can be uniform or linearly varying along the edges while they are assumed to be constant in the direction they act, i.e. the in-plane loads goes directly through the plate. Any combination bi-axial stresses in compression or tension combined with in-plane shear stresses can be used.

A semi-analytical buckling model for steel sandwich plates (SPS) can be found in DNVGL-CG-0154.

5 Acceptance criteria
The acceptance levels for ships follows the rules as given in RU SHIP Pt.3 Ch.8 Sec.1 Table 1

For general buckling assessments of other structures, the acceptance criteria needs to reflect the redundancy and consequence of failure and has to be based on a case by case evaluation by Society.

6 References

13) Kippenes, J., Byklum, E. & Steen, E. *Ultimate Strength of open corrugated panels*, PRADS 2007, Rio, Brazil
17) User’s manual PULS (DNV Software).
SECTION 5 ULTIMATE HULL GIRDER CAPACITY

1 General
The present chapter gives a general description of the ultimate hull girder capacity models (HGUS) as part of the ULS criteria given in RU SHIP Pt.3 Ch.5 Sec.2. This criterion is supplementary to hull girder yielding strength criteria RU SHIP Pt.3 Ch.5 Sec.1 and Prescriptive longitudinal buckling requirements in RU SHIP Pt.3 Ch.8 Sec.3.

HGUS control of a ship represents an overall safety limit state that has the purpose of ensuring sufficient margins against total ship collapse thus avoiding loss of cargo, personnel and ship.

2 Objective
The HGUS girder criteria are to ensure sufficient operational safety margins against overall hull girder collapse under extreme wave load conditions.
For an intact ship hull the vessel shall stay afloat after the extreme wave incident. Buckling, yielding and development of permanent sets/buckles locally in the hull are accepted as long as the hull girder does not collapse or break in two with possible plate cracking, compartment flooding and capsizing as consequence.
For ships suffering collision or grounding damages similar capacity models for hull girder collapse can be used. However such analysis is not mandatory.

3 Scope
The hull sections are to be checked for an extreme Sagging and Hogging condition separately, Figure 1.

Guidance note:
The hull girder strength criteria in this note include only vertical bending response. Horizontal bending and hull twisting of hull sections typical for ships in inclined waves are not included. Similarly, capacity models for large hull asymmetrical collision damages for which the hull sections will twist, warp and bend about an inclined axis even for head waves, is not part of present description.

---e-n-d---o-f---g-u-i-d-a-n-c-e---n-o-t-e---
The hull girder criteria shall be applied to all relevant hull sections along the ship length, also out-side 0.4 L for ship designs in which buckling and hull girder failure is considered to be a possible failure mode.

Guidance note:
Hull girder sections subjected to pure or dominating vertical moments will typically be in the mid-ship area, while sections towards the ship ends will have a combination of bending moment and shear forces.

---e-n-d---o-f---g-u-i-d-a-n-c-e---n-o-t-e---

Figure 1 Example; Ship hull girder in a hogging state, M, Q global hull sectional loads
4 Methods

Ultimate hull girder capacity involves assessing the overall strength by summing up load-bearing capacities of individual elements such as plates, stiffeners, girder s in the cross-section.

Several rule models can be used for assessing the ultimate Moment, \(M_u \):

1) Multi-step model (Smith method - iterations)
2) Single-step model (reduced effective area of compressed members)
3) Non-linear FE analyses

The Multi-step model is described in [6.2] and involves integrating load-shortening curves of all elements in the hull section for finding the ultimate moment capacity \(M_u \). Iterations are necessary in order solve the equilibrium condition at each load step of having no axial force through the section and thus adjusting the neutral axis accordingly.

The Single-step model is described in [6.3] and involves assessing the effective load bearing area of each element a priory. This gives an effective hull section with adjusted neutral axis. The ultimate moment capacity \(M_u \) is found by summing the moment contribution from all elements.

Non-linear FE analyses are accepted following the guidelines in Sec.6. However, approval using such a direct approach is based on case by case evaluation by the Society and comes at extra costs (approval fee).

5 Design safety formats

The design format is given as two uncoupled criteria for moment and shear forces respectively

\[
M_s + \gamma_w \frac{M_u}{\gamma_m} < \frac{M_u}{\gamma_m}
\]

\[
Q_s + \gamma_w \frac{Q_u}{\gamma_m} < \frac{Q_u}{\gamma_m}
\]

The load and safety parameters are given in the rules RU SHIP Pt.3 Ch.5 Sec.4. The ultimate capacity models for \(M_u \) (and \(Q_u \)) are described in [6]

Special considerations are needed for ship types for which double bottom stresses can be an issue with respect to hull girder capacity in hogging.

If non-linear FE models are used the safety factors will specially considered on case by case basis by Society.

6 Simple models

6.1 General

The Society allows basically two types of models for assessing the ultimate capacity; the multi-step and single-step respectively.

6.2 Multi-step method

Multi-step model

The ultimate capacity of the total hull girder section is based on integrating load-shortening curves of the individual plate and stiffeners for both compressive and tension elements. The necessary input for this
approach is the full load-shortening characteristics of all load-carrying members valid in the elastic (pre-collapse) as well as in the plastic (post-collapse) range.

Applying an iterative approach incrementing the hull girder curvature in small steps (with equilibrium correction if necessary) the total $M - \kappa$ relationship is traced. The maximum load identified as the peak moment along this curved, called M_{U}, is then the maximum moment the actual hull girder section can carry.

The general way to find the M_{U} value will be to solve the non-linear physical problem (equilibrium equations) by stepping along the $M - \kappa$ curve using an incremental-iterative numerical approach. This means that the ultimate capacity can be found by summing up the incremental moments along the curve until the peak value is reached, i.e. from knowing the moment in state i the next state $i+1$ can be found.

$$M_{U}^{i+1} = M^{i} + \Delta M^{i}$$

Here the ΔM^{i} is an incremental moment corresponding to an incremental curvature $\Delta \kappa^{i}$ and N is the number of steps used in order to reach the peak value M_{U}, beyond which the incremental moments become negative (post-collapse region).

The incremental moment, ΔM^{i}, is related to the incremental curvature, $\Delta \kappa^{i}$, through the tangent stiffness relation

$$\Delta M^{i} = (EI)_{red-i} \Delta \kappa^{i}$$

Here $(EI)_{red-i}$ represent the incremental bending stiffness of the hull girder. The $(EI)_{red-i}$ stiffness is state (load) dependent and will be gradually lower along the $M - \kappa$ curve and zero at the global hull collapse level (M_{U}). The $(EI)_{red-i}$ parameter shall include all important effects such as:

1) geometrical and material non-linear effects
2) buckling, post-buckling and yielding of individual hull section members
3) geometrical imperfections/tolerances - size and shape; trigger of critical modes
4) interaction between buckling modes
5) bi-axial compression/tension and/or shear stresses acting simultaneously with the longitudinal stresses
6) double bottom bending effects (hogging)
7) shift in neutral axis due to buckling/collapse and consequent load shedding between elements in the cross-section
8) boundary conditions and interactions/restraints between elements
9) global shear loads (vertical bending)
10) lateral pressure effects
11) local patch loads (crane loads, equipments etc.)
12) for damaged hull cases special consideration are to be given to flooding effects, non-symmetric deformations, warping, horizontal bending, residual stresses from the collision/grounding.

One version of the multi-step method is the Smith method which is based on integrating simplified semi-empirical load-shortening ($P - \varepsilon$, load-strain) curves across the hull section to give the total moment $M - \kappa$ relation. The maximum value M_{U} along the $M - \kappa$ curve is found by incrementing the curvature κ of the hull section in steps and then calculated the corresponding increase in moment. When the moment starts to drop the maximum moment M_{U} is identified.

The Smith method is based on load-shortening $P - \varepsilon$ curves for the compressed and collapsing elements and how the listed effects i) - xii) above are embedded into these relations.
6.3 Single-step

The ultimate capacity of the total hull girder section is based on assessing the ultimate capacity of the individual plate and stiffeners buckling/tension capacity (PULS or CFM) and then summarized/integrate up to the total capacity. The individual capacity plates and stiffeners are each given an effective area and the total hull girder capacity is in effect the moment load bearing capacity of the effective hull girder section (i.e. simple beam theory).

The basis for the single step method is to summarize the moments carried by each individual element across the hull section at the point of hull girder collapse, i.e.

\[
M_U = \int_{hull-section} \sigma z \, dA = \sum_{i=1}^{K} P_i z_i = \sum (EA)_{eff-i} \varepsilon_i z_i
\]

where:
- \(P_i \) = Axial load in element no. \(i \) at hull girder collapse \((P_i = (EA)_{eff-i} \varepsilon_i^{g-collapse}) \)
- \(z_i \) = Distance from hull-section neutral axis to centre of area of element no. \(i \) at hull girder collapse. The neutral axis position is to be shifted due to local buckling and collapse of individual elements in the hull-section.
- \((EA)_{eff-i} \) = Axial stiffness of element no. \(i \) accounting for buckling of plating and stiffeners (pre-collapse stiffness)
- \(K \) = Total number of assumed elements in hull section (typical stiffened panels, girders etc.)
- \(\varepsilon_i \) = Axial strain of centre of area of element no. \(i \) at hull girder collapse \((\varepsilon_i = \varepsilon_i^{g-collapse}) \); the collapse strain for each element follows the displacement hypothesis assumed for the hull section
- \(\sigma \) = Axial stress in hull-section
- \(z \) = Vertical co-ordinate in hull-section measured from neutral axis

It is generally accepted for intact vessels that the hull sections rotate under the assumption of Navier’s hypothesis, i.e. plane sections remain plane and normal to “instantaneous” neutral axis, i.e.

\[
\varepsilon_i = z \kappa ; \kappa = \frac{\theta}{L_s}
\]

Where:
- \(\varepsilon_i \) = axial strain of centre of area of element no. \(i \) (relative end-shortening)
- \(\kappa \) = curvature of the hull section between two transverse frames (across hull section length \(L \))
- \(L_s \) = length of considered hull section
- \(\theta \) = relative rotation angle of hull section end planes (across hull section length \(L \))

This gives the following formula for the Ultimate moment capacity

\[
M_U = (EI)_{eff} \kappa
\]

where
Effective bending stiffness of the hull section accounting for reduced axial stiffness \((EA)_{\text{eff-i}}\) of individual elements due to local buckling and collapse of stiffeners, plates etc.

\[
(Ed)_{\text{eff}} = \sum_{i=1}^{K} (EA)_{\text{eff-i}} (z_i)^2
\]

Effective axial stiffness of individual elements/stiffened panels accounting for local buckling of plates and stiffeners and interactions between them. Effects from geometrical imperfections and out-of-flatness to be included

\[
(EdA)_{\text{eff-i}}
\]

\[
\kappa_U = \min \left(\frac{\varepsilon_U^{\text{deck}}}{Z_{\text{deck}}}, \frac{\varepsilon_U^{\text{bottom}}}{Z_{\text{bottom}}} \right)
\]

Hull curvature at global collapse

Average axial strain in deck at global collapse, \(\varepsilon_{U}^{\text{deck}} = \varepsilon_{F}^{\text{deck}} = \sigma_F/E\) is accepted

\[
\varepsilon_{U}^{\text{deck}}
\]

Average axial strain in bottom at global collapse, \(\varepsilon_{U}^{\text{bottom}} = \varepsilon_{F}^{\text{bottom}} = \sigma_F/E\) is accepted

\[
\varepsilon_{U}^{\text{bottom}}
\]

Weighted yield strain of deck elements if material class differences (uni-axial linear material law: \(\varepsilon_{F} = \sigma_F/E\))

\[
\varepsilon_{F}^{\text{deck}}
\]

Weighted yield strain of the bottom elements if material class differences (uni-axial linear material law \(\varepsilon_{F} = \sigma_F/E\)) (corrections to be considered if inner bottom has lower yield stress than bottom)

\[
\varepsilon_{F}^{\text{bottom}}
\]

This gives

\[
M_U = \min (W_{\text{eff}}^{\text{deck}}, \sigma_{\text{eff}}^{\text{deck}}, W_{\text{eff}}^{\text{bottom}}, \sigma_{\text{eff}}^{\text{bottom}})
\]

with the following definitions

\[
W_{\text{eff}}^{\text{deck}} = \frac{I_{\text{eff}}}{Z_{\text{deck}}} \quad \text{Effective section modulus of the hull section in the deck}
\]

\[
W_{\text{eff}}^{\text{bottom}} = \frac{I_{\text{eff}}}{Z_{\text{bottom}}} \quad \text{Effective section modulus of the hull section in the bottom}
\]
7 Direct approach; non-linear FE

A direct method using “state of the art” tools such as non-linear FE codes will represent the most comprehensive approach for assessing the overall hull girder capacity of the vessel.

Depending on the case to be assessed the FE model can include the full ship or cut-out sections within which the hull girder is most likely to collapse.

A large FE ship hull model, extending many frame spacings or even several cargo holds in the longitudinal direction, has the benefit of covering complicated effects which are generally missed when applying short prismatic sections of the hull girder. This can typically be bi-axial stress effects in bottom plating, in-plane shear stresses, double hull bending effects, stress variations around hatches/opening in decks, local loadings and elimination of boundary effects.

The FE mesh density is to be fine enough to capture all relevant types of local buckling deformations and localized plastic collapse behaviour in plating, stiffeners and primary support members.

The following requirements apply when using 4 node shell element (thin-shell element is sufficient):

1) Min. 5 elements across the plating between stiffeners/girders
2) Min 3 elements across stiffener web height
3) One element across stiffener flange is acceptable
4) Longitudinal girders: min. 5 elements between local secondary stiffeners
5) Element aspect ratio 2 or less in critical areas susceptible to buckling
6) For transverse girders a coarser meshing is acceptable. The girder modelling should represent a realistic stiffness and restraint for the longitudinal stiffeners, ship hull plating, tank top plating etc.
7) Man holes and large cut-outs in girder web frames and stringers shall be modelled
8) Secondary stiffener on web frames prone to buckling shall be modelled
9) Plated and shell elements shall be used in all structural elements and areas susceptible to buckling and localized collapse
10) Stiffeners can be modelled as beam-elements in areas not critical from a local buckling and collapse point of view.

When using non-linear FE analyses the accept criteria and partial safety factors in strength format need special consideration. The Society will accept non-linear FE methods based on a case by case evaluation and an independent assessment is to be carried out.
SECTION 6 STRUCTURAL CAPACITY USING NON-LINEAR FE

1 General
In this present guideline the focus is on buckling and collapse analyses applying the quasi-static approach, i.e. structural problems in which the load varies slowly with time (normal wave encounters etc.) such that vibration and short duration dynamic effects can be neglected.
For design assessments the Society will only accept well established and recognized non-linear FE programs. Additional information is available in related guideline for application of non-linear FE for offshore structures, see /1/.

2 Independent assessment by the Society
If the designer chose to apply non-linear FE or equivalent methods for documenting new innovative design solutions not covered by rules, or intend to use more advanced methods than standard rule requirement for design of specific details, an independent non-linear FE simulation will be required.

3 Objectives
The user needs to analyse the actual case under different (initial) conditions in order to identify the sensitivity to important parameters and variables. Such trial and error testing is needed for structures which show particular unstable response, e.g. displaying numerical convergence problems due to violent mode snapping, localized material yielding, progressive collapse behaviour.

4 Scope
The present chapter gives guidelines on how to model and analyse structural problems for plated and framed beam-column structures. Focus is on buckling and collapse failure modes covering material and geometrical non-linear effects, geometrical out-of-flatness and boundary conditions.

5 Non-linear FE methods

5.1 General
Non-linear FE is capable of considering the following non-linear basic effects
a) Non-linear geometrical behaviour
b) Non-linear and inelastic material behaviour
c) Contact problems
d) Fracture.
In ultimate strength assessments of ship structures the a) and b) effects are always to be included while c) and d) are normally not relevant unless for special considerations.
For ultimate capacity models the following items are of special importance:
1) Geometrical out-of-flatness of plate, stiffeners, shells, beams (geometrical imperfections)
2) Load shedding between structural elements; plates, stiffeners, girders etc.
3) Load histories for simultaneous acting loads: ex. bi-axial compression/tension, shear and lateral pressure
4) Element mesh
5) Extent of FE model
6) Boundary conditions
5.2 Non-linear geometrical behaviour

This effect results from large deflections and changes of the geometrical shape due to the acting external load. The effect leads to a non-linear relation between load and deflection when the deflections become large enough compared to the structural dimensions.

For compressive loads acting on a plate, the effect is pronounced already for deflections of the order half the plate thickness and it is typically visualized as local buckles in the plating. For very unstable shell buckling problems the non-linear effect is significant already for deflections being a fraction of the shell thickness. In framed structures such as jack-up platforms etc., large sideways sway deflections will be governed by non-linear effects in general (P-Δ effect amplifying linear response).

Non-linear geometrical effects are most pronounced for slender structures, i.e. large deflections will be present before material non-linearity starts.

Non-linear plate theories based on the thin-walled concepts of von Karman and Marguerre are sufficiently accurate for assessing elastic buckling, ultimate strength and initial post-collapse of steel, aluminium or FRP/GRP composite structures. For other structures such as based on the sandwich concept etc., more accurate plate theories are needed which includes shear deformations through the thickness etc. Alternatively solid elements can be used but that is normally beyond normal design analyses practise.

Recognized FE codes have plate shell elements that account for first order shear deformations through the thickness as part of the standard library (Mindlin or Reissner plate theory or equivalent).

5.3 Non-linear material behaviour

Non-linear material behaviour is characterized by:

— Stress - strain curve
— Yield criteria for metallic materials (von Mises)
— Failure criteria for composites (Tsai-Wu)
— A hardening model for metallic material (isotropic or kinematic)
— A flow rule for metallic materials (defines constitutive material coefficients for plastic flow).

1) Stress – strain curve
The real stress strain curve can be approximated as a multi-linear curve. For steel material with a marked yield plateau a bi-linear approximation is also acceptable with a low plastic tangent module \(E_t = 1000 \text{ MPa} \) or ideally a perfect elastic-plastic curve \(E_t = 0 \).

2) Yield criteria for metallic materials (von Mises)
The von Mises yield criterion is generally accepted for all metallic materials and is the standard “default” model available in FE programs. For new materials verification with the von Mises criterion are to be documented unless a more specific material model has to be implemented. The input to the model is a single input material characteristic, i.e. the uni-axial tensile yield stress.

3) Failure criteria for composites (Tsai-Wu)
For composites materials the Tsai-Wu criterion is generally accepted and available in most FE programs. The criterion needs a set of material strength parameters \(F_{ij} \) that are experimentally determined. Hashin fracture models are recognized alternatives.

4) A hardening model for metallic material (isotropic or kinematic)
The hardening model describes how the yield condition changes when the stresses reaches and moves outside the yield condition. The two most used models are isotropic and kinematic hardening models and both are available in most FE programs.

The isotropic model implies that the shape of the yield stress is the same but it expands equally in all directions. The kinematic model implies that the yield surface is fixed but moves in load space. The latter includes the Bauchinger effect, i.e. after first yielding the tension and compression yield stress will deviate.

For buckling and ultimate strength assessments both models are equally acceptable.

5) A flow rule for metallic materials (defines constitutive material coefficients for plastic flow)
The flow rule relates the incremental stress to the incremental plastic strains defining a set of constitutive coefficients for plastic loading. The J2 flow theory is default in most FE programs and are generally acceptable in combination with metallic materials, von Mises yield criterion and isotropic or kinematic hardening.

5.4 Geometrical out-of flatness

Real structures do always have deviations from the perfect form due to welding and production etc. These imperfection patterns will be rather random and exact information is never available. In practise shipyards and Class Societies have Quality standards defining simple and local maximum tolerance limits to be measured over defined gauge lengths.

Moreover, the ultimate capacity is known to be imperfection sensitive to different degrees depending on the structural configuration, load type, slenderness, redundancy level etc. The issue is of particular concern for non-redundant structures in which the possibility of load shedding is limited or not possible. For larger and redundant plate structures the issue is of less importance, i.e. the focus is rather on the FE model to be able to trigger the most critical (preferred modes) such that progressive collapse and control of the numerical solution are achieved.

Non-linear analyses need to consider the “imperfect” geometry in some way and since real life imperfections patterns (shapes and sizes) are not available simplified regular model imperfections will be the natural approach. There is no exact and unique way to construct model imperfections covering all cases, however, the natural first step will be to use the minimum eigenmode shape for the “perfect” structure, or a combination of eigenmodes if a cluster of eigenvalues around the lowest are found.

Alternative approaches may be used as found relevant, e.g. for rather slender structures a pure non-linear geometrical analyses on the “perfect” geometry may be able to identify “higher” and critical modes not otherwise identified (assume linear elastic material). The computed deformed geometry can then be used as “stress free” imperfection in a fully non-linear analysis with both material and geometrical non-linearities included.

The regular model imperfection amplitude to be used in the FE model should be balanced in relation to how this fictive model shape compares to the typical production shapes. Regular model shapes will be harmonic over a large area while real life deviations are much more localized and random in shape (e.g. “hungry horse” shape for plate panels etc). Thus the former may be taken less than the maximum tolerance specified in the survey Standards. It is generally required that a sensitivity study is carried out in order to document a safe lower bound strength limit.

For cases in which some information is available on the imperfection pattern, or for residual strength assessments based on “measured damages”, it may be relevant to directly model these deviations from perfect form in a reasonable realistic manner.

However, in any case it is crucial to study and vary parameters such that the main features and degree of instability and imperfection sensitivity are identified. The solutions and strength values found should be verified against other relevant analyses models, text book theories and other published work in order to document the validity of the results.

In App.B and App.C respectively two examples are given for illustration; the first being an extremely unstable and imperfection sensitive shell buckling problem and latter being a more moderately sensitive stiffened plate buckling case.

5.5 Load shedding between elements

Analysing structures having an instability problem involves considerations of all relevant buckling modes and their interactions. Mode interactions may be detrimental to the ultimate load bearing capacity and will typically be pronounced in structures where two or more buckling modes will be triggered at or close to the same external load level.

Examples are stiffened plates or built up columns in which buckling typical is possible into a local and overall mode. The triggering of the local mode, like plate buckling between stiffeners, involves loss of stiffness and rigidity for the stiffener, which then triggers an overall mode which next amplifies the local mode etc.
The same type of mode interaction can relevant in built-up columns (jack up legs) where chord buckling represents the local mode and global leg mode the overall mode. In normal jack up leg design the local mode is stronger than the overall mode.

Mode interactions are also linked to load shedding between elements, e.g. in plated structures local plate buckling implies that the stresses sheds to the plate edges/stiffeners/girders (effective width) and the extra compressive loads then to be carried by stiffeners/edges amplifies the plate deflections further etc.

In order to cope with these effects in non-linear FE models it is important to have sufficiently fine mesh so that the buckling modes, especially the local modes, are developing realistically and material yielding are coped with in narrow and “hard corner” zones. Some guidance on element meshing is given in [5.9].

5.6 Load history

Load histories for simultaneous acting loads: For structural problems in which more than one load acts simultaneously a load history is needed. Often the exact relation between the combined loads does not exist and for such cases it is convenient to assume proportional loading, i.e. all loads are scaled in same proportion. For a one step case the loads are scaled as

\[
\begin{bmatrix}
 P_1 = \Lambda P_{1,\text{ref}} \\
 P_2 = \Lambda P_{2,\text{ref}} \\
 \vdots \\
 P_i = \Lambda P_{i,\text{ref}} \\
 \vdots \\
 P_N = \Lambda P_{N,\text{ref}}
\end{bmatrix}
\]

\[i = 1, 2, \ldots, N: \text{N-Number of independent loads } P_i\]

In this way \(N\) independent loads are reduced to one, i.e. the load factor \(\Lambda\), which is to be multiplied with the reference loads \(P_{i,\text{ref}}\) to find each any load at any state. For displacement control, the reference loads must be replaced by reference displacements.

For general description of load histories non-linear FE codes provides full flexibilities by pre-defining all load components as a function of a single and always continuously increasing pseudo time variable \(t\). This can be needed in the case of e.g. prestressed structures, i.e a set of load parameters are first increased to a fixed level and then kept constant while the other load components are then increased up to collapse (see also Sec.4 [3.3]). This is mathematically expressed as:
In this way any load history can be described in load-space as illustrated schematically in Figure 2.

Figure 2 Schematic illustration of load histories;

\[P_i = P_i(t) \] (t-pseudo time) and in load space \((P_1, P_2, ..., P_N)\).

5.7 Boundary conditions

Attention on boundary conditions is important in order to allow all relevant failure modes to develop at the same time as unrealistic edge effects are to be eliminated.

For non-linear analyses focus is both on rotational out of-plane rotations as well as in-plane translational displacements. The former has effects of the linearized eigenvalues while the latter have influence on the post-buckling and non-linear moderate to large deflection effects.
5.8 Extent of model
The extent of the model should be large enough to allow the relevant failure modes to develop without interference from boundary effects. As an example of this, a stiffened plate field should be modelled with two whole frame spacings plus one half frame spacing on either side in the longitudinal direction and a minimum of 6 stiffener spacings in the transverse direction. In this way, the relevant failure modes including stiffener buckling and local and global plate buckling can be captured by the model.

5.9 Element and mesh
The element mesh should be sufficiently detailed to capture all relevant failure modes. Some relevant guiding is;
— Depending on the element type, 3 to 6 elements are needed across a typical half wave in order to have a correct description of local stiffness and buckling strength.
— Element aspect ratio should be ideally as close to square as possible. Aspect ratio beyond three (3) should be avoided.
— Gradual meshing from fine to courses meshed areas are to be used avoiding non-physical and abrupt stiffness changes.

5.10 Residual stresses
Welding stresses are not needed in the FE shells/plate models for which the ultimate strength analyses are main interest. For very localized behaviour in which the behaviour of on the welds are the main focus they may be included using preferably solid elements.
Structures suffering large plastic straining in local areas will also have residual stresses when unloaded (to zero load). This may be topic to be considered if reloading or cyclic response is of relevance.

6 References
1) DNV-RP-C208 Determination of Structural Capacity by Non-linear FE analyses methods, June 2013.
3) Classification Note 30.3, Buckling Criteria of LNG Spherical Cargo Tank Containment Systems - Skirt and Sphere, December 1997.
APPENDIX A BUCKLING OF PLATES AND STIFFENERS

1 Stiffened flat plated Structures

1.1 General
Being the main load bearing element in ship hulls, buckling characteristics of stiffened flat panels are given some extra focus and descriptions herein. The topics discussed covers ultimate strength, elastic buckling and post-buckling, load-shedding/stress redistributions, imperfection sensitivity, load-shortening behaviour and boundary supports effects.

1.2 Ultimate strength – plastic buckling
The ultimate capacity is defined as the maximum load the stiffened panel can carry without collapsing. Compression beyond the ultimate capacity limit is not accepted as plastic buckles and permanent sets will be likely (see also Sec.2 [2.1])

Guidance note:
For most plated structures subjected to predominantly in-plane compressive and shear loads, some marginal and localized material yielding (plate surface yielding due to second order stresses) will always be initiated before the ultimate load limit is reached. However, such marginal material yielding will not lead to major permanent sets/buckling damages and is in this respect harmless. Figure 1 and Figure 2 illustrate typical permanent sets and buckling damages for stiffened plates compressed beyond the ultimate strength limit. Figure 1 is a case where the torsional stiffener failure (S1) is the critical mode and compression beyond this level triggers a tripping failure with localized sideways buckling damages of the stiffener. Figure 1 illustrates a case were the plate (P1) is the weakest element and localized plastic plate buckling takes in case of "overloading".

---e-n-d---o-f---g-u-i-d-a-n-c-e---n-o-t-e---

Figure 1 Localized buckling pattern in the plastic (post-collapse) range, e.g. typical stiffener induced tripping failure.
1.3 Elastic buckling and postbuckling – second order stresses

Elastic buckling of plates is not critical since higher loads than the eigenvalue can be carried due to the positive postbuckling strength being provided from support along the edges. Accordingly, elastic plate buckling is not classified as a failure mode. The deflections are recoverable and do not lead to damages or permanent sets.

Guidance note:
For stiffened plated areas such as decks, bottom areas etc with relatively uniform stress levels, the elastic buckling modes are normally harmonic in shape and span over a relative large area, i.e. typically several plate and stiffener bays, see Figure 3.

---e-n-d---of---g-u-i-d-a-n-c-e---n-o-t-e---

![Figure 3 Harmonic elastic buckling patterns for a) axial compression, b) transverse compression, c) shear loading](image)

Guidance note:
A characteristic feature of elastic buckling is that a “second order stress field” is induced in the structure (self-equilibrium set) adding on top of the direct applied stresses. This is visualised in Figure 4 below where the von Mises membrane stresses vary in periodic pattern following the harmonic buckling mode shape (Figure 3).
Guidance note:
For compressed stiffened plates the rate of grow of second order stresses depends on mainly two parameters; the slenderness (buckling) and the degree of geometrical imperfections in the plating/stiffeners respectively. The second order stresses can be high especially for slender structures. The highest “second order” membrane stresses accumulate along supported plate edges and where stiffeners/girders are attached (hard corner, red zones in figures). When the sum direct + second order stresses are close to the yield stress (first onset of the material yield limit), it is considered that the ultimate capacity is imminent and that panel plastic collapse will be triggered subsequently.

The non-linear response of compressed stiffened plates is conveniently presented as load-deflection curves and the format of load-shortening (stress-strain) is particularly useful as the tangent to the curves represent directly the instantaneous membrane stiffness. The membrane stiffness is of particular interest as it dictates the degree of load-shedding (stress re-distributions) from the actual panel to surrounding structures.

The linear membrane stiffness is Young’s modulus E (Hooke’s law) and any deviation from this upper stiffness value will be due to the combined effect of elastic buckling and geometrical imperfections. The characteristic behaviour for imperfect plates will be that the membrane stiffness drop below the Young's modulus already at zero load (initial stiffness). This drop depends on the imperfection size and shape and it is thus most pronounced for thin to moderately thin plates. The initial stiffness is the same for compressed as for stretched plating as the load-shortening curve is continuous also at zero load.

By compressing the plating further the drop in membrane stiffness will be rather gradual but with a marked change when the eigenvalue is passed. Passing this limit means that the plates enter the elastic post-buckling region, and for near initially perfect plates the characteristics behaviour will be that the post-buckling stiffness is constant. The stiffness drop is significant, i.e. 50% or more is typical for pure plating.

Load-shortening curves for some typical plate configurations and load-directions are given in [1.4].

1.4 Load-shortening stress-strain curves
It is illustrative to show different aspect of non-linear behaviour of plated structures by plotting the load-shortening relation, i.e. the in-plane load carried as a function of the corresponding shortening of the panel (stress-strain). They are here conveniently compared with the linear elastic material curve (Young Modulus) for illustrating membrane stiffness differences before the ultimate capacity is reached. These stiffness deviations imply load shedding characteristics in the elastic range (see also Figure 12).

Load-shortening curves are also the main input to hull girder capacity models of multi-step (Smith) type. For such applications the full curve is used, i.e. pre and beyond the ultimate load into the plastic post-collapse region is needed (HGUS, Sec.5).

For the curves shown here the geometrical imperfections have been modelled as harmonizing with the critical eigenmode shapes. This is a conservative assumption and it will normally predict a safe lower bound strength. In real welded structures, i.e. multi-bayed panels etc, other more random and complex
imperfection pattern of “hungry horse” shape, in combination with harmonic buckling mode shapes, will be typical.

Figure 5 and Figure 6 show such curves for two different slenderness categories for the case of axial compression of unstiffened plates. Figure 5 is for $t = 10$ mm plating with varying geometrical imperfection amplitude (x-factor; w_{max}) in the range 3.8 to 45.9 mm, the latter being an extreme (damage) case. Figure 6 is for $t = 20$ mm plating with varying geometrical imperfection amplitude (w_{max}) in the range 1.9 to 22.9 mm.

Figure 5 Load-shortening curves for plates with different slenderness (ABAQUS). Axial compression of plate 4000 mm x 1000 mm x 10 mm; $\sigma_{y} = 315$ MPa; $\lambda = 1.94$ ($t = 10$ mm).

Figure 6 Load-shortening curves for plates with different slenderness (ABAQUS). Axial compression of plate 4000 mm x 1000 mm x 20 mm; $\sigma_{y} = 315$ MPa; $\lambda = 1.02$ ($t = 20$ mm).

The curves illustrate that for thin plates ($t = 10$ mm) the tangent stiffness drops off the linear Young’s modulus stiffness (E) much before the ultimate capacity is reached. This indicates that load-shedding will
take place to supporting edges/stiffeners/girders. Moreover the ultimate capacity itself is seen to be rather insensitive to the size of the imperfection amplitude in the range of normal tolerances, ca. 4 to 15 mm. The curves for the thicker plates \((t = 20 \text{ mm})\) shows no drop in the linear Young’s modulus stiffness \((E)\) up to the ultimate capacity limit. This indicates that load-shedding will not take place unless the plate is compressed beyond the peak load and into the plastic range which is not an option for properly dimensioned ships following the rules. Moreover it is noted that the ultimate capacity itself is seen to be moderate sensitive to the size of the imperfection amplitude, ca. 2 to 8 mm.

Figure 7 and Figure 8 give similar curves for transverse compression of the same plates \((t = 10 \text{ mm}; t = 20 \text{ mm})\).

![Load-shortening curves for plates with different slenderness (ABAQUS). Transverse compression of plate 4000 mm x 1000 mm x 10 mm; \(\sigma_y = 315 \text{ MPa}; \lambda = 3.86 (t = 10\text{mm}).\)](image)

Figure 7 Load-shortening curves for plates with different slenderness (ABAQUS). Transverse compression of plate 4000 mm x 1000 mm x 10 mm; \(\sigma_y = 315 \text{ MPa}; \lambda = 3.86 (t = 10\text{mm}).\)
Figure 8 Load-shortening curves for plates with different slenderness (ABAQUS). Transverse compression of plate 4000 mm x 1000 mm x 20 mm; \(\sigma_y = 315 \text{ MPa}; \lambda = 1.93 \) (\(t = 20 \text{ mm} \)).

The transverse compression curves clearly illustrates that both thin plates (10 mm) and thicker plates (20 mm) drops off the linear Young’s modulus stiffness (\(E \)) well before the ultimate capacity is reached. This indicates that load-shedding will be a dominating feature for such structures. An example can be double bottom structures and high transverse stresses from cargo/sea pressure/waves. Moreover the ultimate capacity itself is seen to be rather insensitive to the size of the imperfection amplitude particularly so for thin plates.

Guidance note:

Depending on the slenderness the plate buckling characteristics deviate in the pre-and post-buckling region while in the post-collapse region the curves follow basically the same trend.

It is characteristic that the ultimate capacity is reached for a shortening strain in the range of 0.9 to 1.0 of the yield strain, i.e. closer to 1.0 for most of the axial compression cases and closer to 0.9 for transverse compression cases.

---e-n-d---of---g-u-i-d-a-n-c-e---n-o-t-e---

Two examples of load-shortening curves for axial compression/tension of stiffened panels are included illustrating the main characteristics of the two most typical localized collapse modes;

1) Stiffener induced failure/tripping mode, see Figure 1 and Figure 9.
2) Plate induced failure, see Figure 2 and Figure 10.
From these load-shortening curves it is observed that the stiffness follows very closely the Young’s modulus (E) up to the peak load. However, note that since the nominal stress (stiffness) here also includes the stiffener cross-sectional area, the load shedding between plating and stiffeners is not so easily observed as for the unstiffened plate curves in Figure 5 and Figure 6.

It is also shown that the characteristics of the post-collapse behaviour deviate somewhat for the two failure modes but the trend of the rate of change of the negative slope into the large axial shortening range is rather similar.
1.5 Elastic buckling and post-buckling, reduced membrane stiffness – general

By only focusing on the elastic region of the load-shortening curves, the stiffness characteristics as function of the buckling strength (eigenvalue) and geometrical imperfections are more easily observed. Note that the assumption in these discussions is that the shape of the imperfections is harmonized with the lowest eigenmode.

Figure 11 below shows typical results for transversely compressed plating. It is observed that the "perfect" case (0.2 mm imperfection) has a clear bi-linear characteristic; i.e. a linear pre-buckling curve \(E \) with an abrupt change of tangent stiffness beyond the eigenvalue with a reduced linear stiffness post-buckling curve \(E^* \).

By adding imperfection amplitudes into the model the drop in tangent stiffness become evident also from the very onset of load application, i.e. for zero load the tangent (initial) stiffness is clearly influenced by the size of imperfections. From the curves, see Figure 11 a, it can be observed that the initial stiffness converges against the post-buckling stiffness for large imperfection amplitudes (damages), and the reduced tangent stiffness is also evident for tension loading.

![Figure 11 Load-shortening curves illustrating stiffness changes due to varying size of imperfection amplitude in lowest Eigenmode shape (a=4000 mm, b=6000 mm, t=10 mm, E=206 000 MPa, ν = 0.3; Loading: In-plane shortening control in \(ε_2 \) prescribed while \(ε_1=0 \)).](image-url)
be linearized in an incremental sense and the load-shortening can simply be written in incremental macro material form as

$$\Delta \sigma = E^* \Delta \varepsilon$$

The E^* is the reduced tangent stiffness of the elastically buckled plate to be compared with the linear Hooke’s law value E. For integrated plates, as in ship structures following axial strain (ε) compatibility, the stiffness difference is a measure of load to be shed to neighbouring linearly behaving elements (stiffeners, girders) (see Figure 12).

These characteristics of elastic plate buckling behaviour and imperfection dependence can be utilized in modern rule procedures that apply linear Cargo hold/global FE models and Ultimate Limit State (ULS) principles for buckling control ([1.6]).

Figure 12 Drop in effective E module (E^*) beyond the eigenvalue; Load shedding to plate edges/neighbouring elements

For a plate with cross-sectional area A_c the load to be redistributed to stiffeners/girders/floors (assuming these to behave linearly) are accordingly

$$P_{shed} = (E - E^*)A_c(\varepsilon - \varepsilon_E)$$

where

- P_{shed} = Load to be redistributed to stiffeners or girders along edges
- A_c = Plate cross sectional area (plate width * plate thickness)
- ε = actual average engineering strain of plate (shortening)
- If $\varepsilon < \varepsilon_E$ it is assumed that no load shedding takes place for “perfect plate”
- ε_E = strain at elastic buckling $\varepsilon_E = \sigma_E / E$
\[\sigma_E = \text{elastic buckling stress (eigenvalue)} \]

For pure axial compression

\[E' = 0.5E \]

\[\sigma_E = \frac{E \pi^2}{3(1 - \nu^2)} \left(\frac{t}{b} \right)^2 \]

For pure transverse compression

\[E' = C_{22} - \frac{(C_{12})^2}{C_{11}} \]

\[\sigma_E = \frac{E \pi^2}{12(1 - \nu^2)} \left(\frac{t}{b} \right)^2 \left(1 + \left(\frac{b}{a} \right)^2 \right)^2 \]

1.6 Load-shedding – linear anisotropic FE modelling – imperfect plates

For plates subjected to combined in-plane loads (bi-axial, shear), as typical for ship hull plating, the load-shortening relations can be written in a very compact macro material form linking the loads to the corresponding edge straining as follows (matrix notation)

\[
\begin{bmatrix}
\Delta \sigma_1 \\
\Delta \sigma_2 \\
\Delta \sigma_3
\end{bmatrix} =
\begin{bmatrix}
C_{11} & C_{12} & 0 \\
C_{21} & C_{22} & 0 \\
0 & 0 & C_{33}
\end{bmatrix} \begin{bmatrix}
\Delta \varepsilon_1 \\
\Delta \varepsilon_2 \\
\Delta \varepsilon_3
\end{bmatrix}
\]

and inverted

\[
\begin{bmatrix}
\Delta \varepsilon_1 \\
\Delta \varepsilon_2 \\
\Delta \varepsilon_3
\end{bmatrix} =
\begin{bmatrix}
S_{11} & S_{12} & 0 \\
S_{21} & S_{22} & 0 \\
0 & 0 & S_{33}
\end{bmatrix} \begin{bmatrix}
\Delta \sigma_1 \\
\Delta \sigma_2 \\
\Delta \sigma_3
\end{bmatrix}
\]

The incremental material form is needed since the \(C_{ij} \) coefficients are load dependent (state dependent). Here a delta symbol (\(\Delta \)) before the stress (\(\sigma \)) and strain (\(\varepsilon \)) notations imply incremental properties.

Then, as illustrated in Figure 11, i.e. the tangent stiffness at zero load (the initial stiffness) is observed to be dependent on the imperfection size. It can also be seen that the tangent is rather unchanged for loads up to around the eigenvalue. These “linear” observations suggest that the drop in membrane stiffness can be modelled by manipulating the material coefficient in a linear behaving model, e.g. FE Cargo Hold models. From a non-linear plate buckling model the following simple expressions for the initial tangent stiffness coefficients are derived
Where the involved parameter are defined as

\[A = \frac{2(k_1 + k_2)^2}{q_{10}^2} + 3(3 - v^2)(k_1^2 + k_2^2) + 12vk_1k_2 \]
(imperfect plates)

\[A = 3(3 - v^2)(k_1^2 + k_2^2) + 12vk_1k_2 \]
(perfect plates)

\[k_1 = \left(\frac{t}{a}\right)^2; \quad k_2 = \left(\frac{t}{b}\right)^2, \quad q_{10} = \frac{\delta}{t} \]

\[q_{10} = x \left(\frac{S}{t}\right)^2 \frac{\sigma}{E} \]
(imperfection model; Faulkner)

\(x = \) imperfection factor, see Guidance Note in [1.7].

For modelling in standard FE programs the material anisotropic/orthotropic coefficients \((E_1, E_2, v_{12}, G_{12})\) are different than in the notation \((C_{ij})\) used describing buckling models. However, there is a simple relation between them as given below.

In FE tools the orthotropic material model is given as:

\[
\begin{bmatrix}
\sigma_1 \\
\sigma_2 \\
\tau_{12}
\end{bmatrix} =
\begin{bmatrix}
1/E_1 & -v_{12}/E_1 & 0 \\
-v_{12}/E_1 & 1/E_2 & 0 \\
0 & 0 & 1/G_{12}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\gamma_{12}
\end{bmatrix}
\]

The relation between the \(E_1, E_2, v_{12}, G_{12}\) and the \(C_{ij}\) coefficients above is:
In practise for rectangular plates with aspect ratio say >2, the E_2 and ν_{12} may be significantly lower than the corresponding linear values while the E_1 is almost unchanged ($\approx E$). For plates with aspect ratio < 2 the E_1 will also be reduced accordingly and in the limit of a square plate the stiffness reductions are equal in both directions. The shear stiffness G_{12} (C_{33}) is reasonably approximated to be the full linear value.

1.7 Geometrical imperfection effects - knock down

The ultimate capacity of compressed stiffened plates will be reduced due to the presence of geometrical imperfections from production and welding. This effect is often called imperfection sensitivity or knock-down effect if the actual level production imperfections are included.

Imperfections here refer to out-of-flatness/straightness of plate and stiffeners, load eccentricities, misalignments and welding residual stresses.

The degree of imperfection sensitivity will be highest for moderate slender plates and less for slender plates. For stocky plates, the capacity will be govern by material yielding and the non-linear effect due the imperfection is small.

For plates the imperfection sensitivity is moderate in general. Scatter in ultimate capacity for normal plates can be expected to be in the range of 5 to 15% considering typical normal production levels as used in yards for ship hulls. Figure 5 and Figure 6 include some data which support these levels.

Guidance note:

Geometrical imperfections in welded steel plates have a rather random characteristic across multiple bays, i.e. they will vary both in size and shape in the different plating directions (x, y). From a buckling strength point of view the imperfections coinciding in shape with natural/preferred modes (typical eigenmodes) are most critical. Thus imperfections deviating from this idealized shape (e.g. hungry horse etc.) will not be very detrimental and rather add on the upper side of the strength.

When analysing the ultimate capacity of flat plated structures (e.g. in non-linear FE etc.) a model imperfection approach is used rather than the real life imperfections since the latter are not available nor practical to use in computer codes. The model imperfection amplitude is normally taken less than maximum local tolerance limits given in e.g. fabrication standards and IACS Rec.47.

The ultimate strength predictions from CFM (Sec.3) and PULS (Sec.4) are consistent with the normal tolerance limits as given in IACS and DNV GL fabrication standards/Instruction to Surveyors.

An imperfection model for plates frequently referred to in connection with buckling and ultimate strength is due to Faulkner /1/. This model is based on some full scale measurements on ship plating and simply relates the maximum imperfection amplitude (w_{max}) to the plate slenderness in the following format

$$\frac{w_{max}}{t} = x \left(\frac{b}{t}\right) \left(\frac{B}{E}\right)^{2}$$

; Faulkner imperfection model

Where a typical range for x-factor is given as

$x = 0.025$ slight imperfections
Appendix A

1.8 Boundary support

Boundary support of plates will directly influence on the buckling, post-buckling and ultimate strength characteristics. With reference to buckling features it is convenient to split the boundary conditions in two categories, rotational edge and in-plane support.

Rotational edge support (1st order)

1) Rotational edge supports spans typically from free to rotate (simply supported) to a fully rotationally fixation (clamped support).

The degree of rotational restraint is a “first order effect” and influences significantly on the elastic buckling stress (eigenvalue) and thereby also the ultimate capacity. Typically a clamped plate compressed perpendicular to the long edges will have an elastic buckling stress of the order of four (4) times the simply supported plate.

An example is the longitudinal buckling strength of transversely framed ships for which the rotational stiffness of the web plating in the floors will effectively improve the buckling strength of the bottom/tank top plating as compared to assume no restraint (simply supported).

2) In-plane membrane support (2nd order)
The in-plane support is a "second order effect" which influence on the post-buckling behaviour and not the elastic buckling load. The impact on the ultimate strength is thus small in general and negligible for normal ship hull scantlings.

In the rules two types of in-plane boundary supports are defined

— Method A: All plate edges are forced to remain straight but are free to move in the plate plane. This corresponds to boundary conditions as typical for integrated (multi-bayed) plates in ship hulls like decks, bottom plating, bulkheads etc.

— Method B: Plate edges are free to pull in-plane, i.e. no restraints from surrounding structures. This corresponds to boundary conditions typical for floors in double bottoms, girder structures with free in-plane but laterally supported edges.

Guidance note:
Method B is the option in the rules for checking buckling strength of typical girders, stringers, floor etc for which the plating (e.g. girder web plating) has no real in-plane restraint from surrounding structures while supported rigidly out-of the plate plane along edges. The stress level/gradients in the web plating will depend on the actual external loading, being uniform loads (from sea pressure) or more localized loads (as from container cell guides). The plate buckling models need to consider the degree of stress localizations being a combination of shear and bi-axial stresses across rather local areas.

1.9 Design principles - summary

The overall buckling design principles of stiffened panels in the present rules are summarized as:

1) Elastic buckling of plating between stiffeners and girders is accepted as long as the stress redistributions (load shedding) to neighbouring structures such as stiffeners and girders are ensured.

 Guidance note:
 For stiffeners an effective approach is generally used for this purpose.
 For transverse girders a more general approach is given in [1.6].

2) Elastic overall buckling of stiffeners are not accepted, i.e. the stiffeners should be sufficiently strong out-of the plate so as to provide support to plating.

3) The Ultimate capacity is not be exceed by a safety margin as defined in the rules

 Guidance note:
 This prevents local plastic collapse and permanent sets and buckle damages.

The present analyses shows that it is crucial that the unstable postbuckling behaviour is identified and that geometrical imperfections are included in the FE analyses.

2 General ULS design check formats

2.1 Implicit limit state formulations – general

A limit state function $G(x_1, x_2, ...)$, in its most general form, is a non-linear function in the design parameters x_1, x_2, x_3 ... etc.

In the ULS terminology the function describe a buckling failure mode and have the following properties

$G(x_1, x_2, x_3, ...) > 0$; OK safe region

$G(x_1, x_2, x_3, ...) = 0$; OK on the limit of safe/unsafe region

$G(x_1, x_2, x_3, ...) < 0$; NOT OK unsafe region
where the parameter vector \((x_1, x_2, x_3 \ldots)\) typically has components such as
\((x_1, x_2, \ldots)\) load/stress components, \(s_1, s_2, \ldots\) etc
\((y_1, y_2, \ldots)\) geometrical parameters; plate thickness etc
\((z_1, z_2, \ldots)\) material parameters; yield stress etc
\((y_1, y_2, \ldots)\) partial safety coefficients, load factors, material factors etc.

A limit state function \(G(x_1, x_2, \ldots)\) involves normally several load/stress component. For integrated plates
the loadings are typical three simultaneously acting in-plane stresses; bi-axial stresses in perpendicular
directions with simultaneously acting in-plane shear and lateral pressure.

The \(G\) function is generally written in terms of loads \((\sigma_1, \sigma_2, \sigma_3, p)\) and design parameters \((y_1, y_2, \ldots)\) (plate
thickness etc.) as:

\[
G(\sigma_1, \sigma_2, \sigma_3, p, y_1, y_2, \ldots)
\]

The solution to:

\[
G(\sigma_1, \sigma_2, \sigma_3, p, y_1, y_2, \ldots) = 0
\]

will be a surface in three dimensional load space \((\sigma_1, \sigma_2, \sigma_3)\) as illustrated in Figure 14.

Assuming a proportional load history in the in-plane loads, i.e. introducing a load proportional factor \(\Lambda\)
(scaling factor) defined as:

\[
\begin{align*}
\sigma_1 &= \Lambda \sigma_{10} \\
\sigma_2 &= \Lambda \sigma_{20} \\
p &= p_0 = \text{fixed, } (\sigma_{10}, \sigma_{20}, \sigma_{30}) = \text{reference fixed in-plane design stresses} \\
\sigma_3 &= \Lambda \sigma_{30}
\end{align*}
\]

The limit state function \(G(x_1, x_2, x_3\ldots) > 0\) can then be written as a non-linear function in the single load
parameter \(\Lambda\), i.e. \(G(\Lambda, y_1, y_2, y_3\ldots) = 0\). This equation solved explicitly in \(\Lambda\) gives the value for the load factor
at the ultimate capacity, i.e.

\[
\Lambda = \Lambda_u
\]

And the ultimate capacity of the in plane stresses are

\[
\begin{align*}
\sigma_{1u} &= \Lambda_u \sigma_{10} \\
\sigma_{2u} &= \Lambda_u \sigma_{20} \\
\sigma_{3u} &= \Lambda_u \sigma_{30}
\end{align*}
\]

It follows from the definition of the usage factor
Buckling

The solution of $G(\Lambda, y_1, y_2, y_3) = 0$ with respect to load parameter Λ can be facilitated by simple load incrementing checking left side against right side, or applying other more general approaches based on Newton-Raphson iterations or equivalent.

2.2 Explicit limit state formulations

Limit state functions describing buckling of elements can under certain conditions be written in a simplified linear form with respect to the load (S) and resistance parameters (R), i.e. it takes the form

$$G(y_1, y_2, y_3, \ldots) = R(y_1, y_2, y_3, \ldots) - S(y_1, y_2, y_3, \ldots)$$

where

$R(y_1, y_2, y_3, \ldots)$ is the resistance (ultimate capacity)

$S(y_1, y_2, y_3, \ldots)$ is the load effect (external load/stress)

From $G(y_1, y_2, y_3, \ldots) > 0$ it follows that the limit state criterion simplifies to

$$S(y_1, y_2, y_3, \ldots) \leq R(y_1, y_2, y_3, \ldots)$$

This linear format gives directly the usage factor as used in rule terminology, i.e. inverse of safety factor.
3 References

APPENDIX B NON-LINEAR FE – TORISPHERICAL TANK

Buckling of a toro-spherical tank shell subjected to external pressure constitute a special and demanding case in that spherical shells is known to behave very unstable and thus shows a high degree of imperfection sensitivity.

The dimension of the shell is shown in Figure 1 where the shell thickness is 8 mm with the largest radius of 4328 mm. The yield stress of the tank is taken as 480 MPa.

![Figure 1 Dimension of the shell](image)

The tank has been modelled with a very fine mesh so that any local and short waved buckling pattern is described with sufficient accuracy. The FE model is shown in Figure 2.

![Figure 2 FE Model of toro-spherical shell – Very fine mesh close up](image)

For having a reference strength estimate, a linear elastic eigenvalue calculation has been carried out. The eigenvalue found from ABAQUS was $P_E = 0.84$ MPa (8.4 bar).

As a verification of this value the text book solution from /2,3/ is checked in terms of the principal stress

$$\sigma_{CL} = \frac{E}{\sqrt{3(1-\nu^2)}} \frac{t}{r} = 0.606 \frac{E}{r} t$$
For a complete a sphere the membrane stress and surface pressure is related as

$$p = 2\sigma \frac{t}{r}$$

giving

$$p_{CL} = \frac{2E}{\sqrt{3(1-v^2)}} \left(\frac{t}{r} \right)^2 = 0.87 \text{ MPa (8.7 bar)}$$

The principal membrane stress in the shell spherical part is for buckling pressure

$$\sigma_{CL} = \frac{1}{2} p_{CL} \frac{r}{t} = 235 \text{ MPa (< 480 yield stress)}$$

This confirms that the actual tank geometry very closely behaves and buckles as an comparative complete sphere with dominantly elastic response.

Buckling of spherical shells are known to behave very unstable and the eigenvalue is far from a realistic design capacity. In Sec.8 [3.3] a knock down value due to unstable postbuckling and presence of geometrical imperfections is predicted as

$$\rho = \frac{0.5}{\sqrt{1 + \frac{r}{t} \frac{1}{100}}} = 0.2$$

i.e meaning that design buckling capacity is $0.87 \times 0.2 = 0.17$ MPa (excluding safety factors)

Non-linear FE calculations were carried out systematically by varying the imperfection amplitude. It was clearly observed that the imperfection sensitivity was extreme and that buckling capacity was rapidly falling from the “perfect” shell of 0.84 MPa to 0.24 for imperfection amplitudes less than the shell thickness. The results are shown in Figure 1 were the capacity computed using the formula in Sec.8 [3.3] is included. The latter and simple assessment is slightly conservative compared to fully non-linear finite element analysis.
Figure 3 Sensitivity study for imperfection with the shape of the first eigenmode where the capacity is normalised wrt the classical eigenvalue p_{CL}.

Load-displacement curves for some different imperfection amplitudes is shown in Figure 4 a), b) c) d)
Figure 4 Response curves for different imperfection magnitudes

The non-linear analyses were carried out using model imperfections in the shape of the minimum eigenmode. It was evident that the non-linear collapse was unstable and that mode snapping occurred around the ultimate pressure. The shape of the imperfection and the collapse mode are shown in Figure 5.

Figure 5 (a) Post-collapse mode and (b) eigenmode used as imperfection
Figure 6 Analytical predictions for sensitivity of complete spherical

Discussions
The present toro-spherical LNG tank enclosure shows extreme unstable buckling response which is according to known and documented behaviour in the literature /1-3/ and Figure 6. The knock-down factor, defined as the buckling capacity of the "imperfect" shell in relation to the perfect shell, is found to be \(\frac{p_u}{p_{CL}} \) 0.24/0.84 = 0.28, i.e. the capacity of the real shell is the range of 70% lower than the perfect shell. The response is dominantly elastic up to the ultimate pressure and only marginal surface yield towards the toro-spherical part is identified.

The present analyses shows that it is crucial that the unstable postbuckling behaviour is identified and that geometrical imperfections are included in the FE analyses.

1 References
Non-linear finite element analysis has been used to investigate the effect of local buckling stiffeners at the free edges of cut-outs in a girder web subjected to a pure axial load. The girder is shown in Figure 1.

The geometry and boundary conditions are shown for the unstiffened and stiffened web plate in Figure 2 and Figure 3 respectively. The initial imperfection is taken equal to the first eigenmode as shown in Figure 4. A similar imperfection mode is used for the web with buckling stiffener as shown in Figure 5.

![Figure 1 Dimensions of the girder](image)

Out-of-plane support

Simply supported ends that are forced to remain straight and parallel

![Figure 2 Geometry and boundary conditions of the unstiffened web plate](image)
Figure 3 Geometry and boundary conditions of the web plate with local buckling stiffeners

Figure 4 Imperfection and eigenmode for the web plate without buckling stiffeners and with buckling stiffeners.

For the plate without buckling stiffener, response curves obtained by non-linear FE are shown in Figure 5/Figure 6. The ultimate capacity is 140 MPa which is the maximum point of the response curve and the corresponding capacity mode is shown in Figure 7. In this case, the ultimate capacity is larger than the linear elastic buckling load (eigenvalue) at 100 MPa. This means that the plate has some reserve strength beyond elastic buckling.
In Figure 5/Figure 6, unloading curves are included from three different levels. It can be seen that the permanent deformation is zero when unloading from elastic buckling in this case. After unloading from the ultimate capacity, the plate will have some, but very small (2 mm), permanent deformations (purple curve). An unloading curve from post-collapse is also included in the figures (green curve). In this case the permanent deformation is more significant (14 mm) and the shape is shown in Figure 8.

Figure 5 Plate response for the web plate with cut-outs; loading and unloading

Figure 6 Plate response for the web plate with cut-outs; loading and unloading
Figure 7 von Mises membrane stresses at ultimate load for the web plate with cut-outs

Figure 8 Permanent deformations (max. 14 mm) when unloading from post collapse
For the plate with buckling stiffeners, the response curve obtained by non-linear finite element is shown in Figure 9. The ultimate capacity is 180 MPa which is 30% larger than for the plate without buckling stiffeners. In addition, elastic buckling does not occur before the ultimate strength is reached. The von Mises membrane stresses at ultimate load is shown in Figure 10.

Figure 9 Plate response for the web plate with buckling stiffeners

Figure 10 von Mises membrane stresses at ultimate load for the web plate with cut-outs and buckling stiffener
Imperfection Sensitivity study

A sensitivity study with respect to the imperfection magnitude has also been performed and the results are presented for both a plate with and without local edge stiffening in Figure 11. It can be seen that the effect of the imperfection magnitude is small for both cases.

For the plate without edge stiffener, this is because the slenderness is rather large and for such cases the imperfection sensitivity is usually small. For the plate with edge stiffener, the imperfection sensitivity is small since the imperfection with maximum amplitude at the edge is not coincident with the critical mode.

Figure 11 Longitudinal membrane stresses for the web plate with cut-outs and buckling stiffener

Comparisons with CFM calculations

The computed FE-results by Abaqus are compared with the CFM for a simply supported plate (Sec. 3). In the CFM, the ultimate capacity is computed for the plates below and above the cut-out as shown in Figure 12. The nominal stress for the capacity S_{cx_tot} of the total girder web with height h_{tot} is found by adding the contribution from Panel 1 and 2 (weighted area approximation):

$$S_{cx_tot} = \frac{h_1 S_{cx_1} + h_2 S_{cx_2}}{h_{tot}}$$

where S_{cx_1} and S_{cx_2} are the capacity for Panel 1 and 2, respectively, and h_1 and h_2 are the corresponding height of the panels.
Figure 12 Local panels that are used in buckling check with the CFM

For the plate web without local buckling stiffeners the formulas for plates with free edge is used as illustrated in Figure 13. For the plate web with buckling stiffeners, the CFM formulas for a simply supported plate is used for panel 1.

Figure 13 Formulas from Sec.3 for capacity of plates with a free edge.

The capacities computed by the formulas in Sec.3 are given in Table 1. The FE-results are 48% larger than the CFM calculations for the plate without buckling stiffeners, and 6% smaller for plate with buckling stiffeners.

Table 1 Capacity computed by the formulas in Sec.3

<table>
<thead>
<tr>
<th>Case</th>
<th>Stress ratio ψ</th>
<th>Aspect ratio α</th>
<th>Buckling factor K</th>
<th>Reduction factor C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>$K_1 = 4(0.425 + 1/\alpha^2)$ $/3\psi + 1$</td>
<td>$C_1 = 1$ for $\lambda \leq 0.7$</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>$K_2 = 4(0.425 + 1/\alpha^2)(1 + \psi) - 5\psi(1 - 3.42\psi)$</td>
<td>$C_t = 1/(\lambda + 0.51)$ for $\lambda > 0.7$</td>
</tr>
</tbody>
</table>

Discussion

The present detailed analyses show that the capacity of a typical ship girder with cut-out depends strongly on whether stiffener edge reinforcements are attached or not. The results with free unstiffened edges shows...
that the elastic buckling is triggered around 100 MPa nominal stress and for loads beyond this level and up the ultimate capacity the axial stiffness has dropped ca 40% (60% left of net web area stiffness). The nominal ultimate capacity is found for this example to be around 130 MPa. If the girder is compressed beyond this level (overload) significant permanent sets (damages) is identified and the free edge has suffered a severe localized plastic collapse (Figure 8).

By adding edge stiffener at cut-out upper edge the nominal ultimate capacity is increased to around 180 MPa and failure mode is moved to be away from the cut-out cross-section. The elastic buckling stress higher than the ultimate capacity (217 MPa).

The nominal load bearing capacity of 190 MPa in the way of the cut-out cross-section corresponds very closely to assuming the net web girder area to carry the yield stress (Table 1).

The imperfection sensitivity is also documented to be minimal for the present structure, i.e. this is in contrast to the spherical shell case in App.B.

The comparison between CFM and non-lin FE are reasonable.
Driven by our purpose of safeguarding life, property and the environment, DNV GL enables organizations to advance the safety and sustainability of their business. We provide classification and technical assurance along with software and independent expert advisory services to the maritime, oil and gas, and energy industries. We also provide certification services to customers across a wide range of industries. Operating in more than 100 countries, our 16 000 professionals are dedicated to helping our customers make the world safer, smarter and greener.