PART 6 CHAPTER 12

ENVIRONMENTAL CLASS

JANUARY 2011

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sec. 1</td>
<td>General</td>
<td>5</td>
</tr>
<tr>
<td>Sec. 2</td>
<td>Class notation CLEAN</td>
<td>12</td>
</tr>
<tr>
<td>Sec. 3</td>
<td>Class notation CLEAN DESIGN</td>
<td>19</td>
</tr>
<tr>
<td>Sec. 4</td>
<td>Electrical shore connections</td>
<td>27</td>
</tr>
</tbody>
</table>
CHANGES IN THE RULES

General
The present edition of the rules includes amendments and additions approved by the Executive Committee as of November 2010 and supersedes the July 2008 edition of the same chapter.
The rule changes come into force as described below.
This chapter is valid until superseded by a revised chapter.

Main changes coming into force 1 July 2011

• Sec.1 General Requirements
 — The previous Table A1 has been removed and previous Table A2 has been renumbered accordingly.
 — Table A1 has been amended and references to EO, ECO and OPP-F notation have been removed.
 — Table B1 has been updated according to the latest ISO requirements.
 — In item C101 a requirement for a “clean manual” has been inserted.
 — Previous tables C1, C2 and C3 have been revised according to the new requirements and merged to a new Table C1.
 — A new Table C2, Certificate requirements, has been added.

• Sec.2 CLEAN Notation
 General: As MARPOL Regulation 12A mostly covers OPP-F notation this is not anymore mandatory for CLEAN. Some requirements have been clarified (e.g. refrigerants and Ballast Water Management Plan). As option to use of low sulphur fuel, requirements for electric shore connection have been inserted. The recommendation for Green Passport has been removed.
 — Two new items, B103 and B104, have been added for better understanding.
 — Sub-section element B300 has been re-written and the requirement in B303 has been aligned with Revised MARPOL Annex VI on Sulphur for ECA Areas.
 — In item B409, reference to Pt.4 Ch.1 has been corrected.
 — Two new items, B502 and B503, have been added.
 — In sub-section element C400, requirements have been implemented based on the vessel types.
 — In sub-section element C500, the requirements have been revised according to the ballast water convention.
 — In sub-section element C800, the requirements have been clarified.
 — Previous sub-section element D100 has been deleted and the remaining sub-section element has been renumbered.

• Sec.3 CLEAN DESIGN Notation
 General: Requirements on SOx emissions have been aligned with the revised MARPOL Annex VI. As an alternative to the use of low sulphur fuel in ports, requirements on electric shore connection have been inserted. For the discharge into sea, IBTS requirements have been implemented. For bilge water, requirements on 5 ppm equipment have been inserted. It is now required to have the 5 ppm DNV type approval certificate. Grey water is now considered. Requirements on garbage have been aligned with the latest developments. Sterntube shall now be lubricated with water based (or biodegradable) oil. Finally double hull protection requirements have been clarified.
 — In item B303, requirements have been aligned with Revised MARPOL Annex VI on Sulphur for ECA Areas.
 — New items B304, B305 and B306, replace previous item B304.
 — In item B701, the requirement has been simplified.
 — Sub-section element C100 has been completely re-written.
 — In item C201, requirements have been aligned with MARPOL Annex II.
 — Previous item C403 has been deleted.
 — In sub-section element C500, requirements have been aligned with the ballast water convention.
 — Sub-section elements C600 to C800 have been completely re-written.
 — Sub-section element D100 has been revised and clarified. Implemented according to the UI of Regulation 12A.
 — Sub-section element E100 has been completely re-written.

• Sec.4 Electrical Shore Connection
 — A new section for optional requirements has been inserted.

Corrections and Clarifications
In addition to the above stated rule requirements, a number of corrections and clarifications have been made to the existing rule text.

The electronic pdf version of this document found through http://www.dnv.com is the officially binding version
© Det Norske Veritas

Any comments may be sent by e-mail to rules@dnv.com
For subscription orders or information about subscription terms, please use distribution@dnv.com
Computer Typesetting (Adobe Frame Maker) by Det Norske Veritas
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sec. 1</td>
<td>General</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>Classification</td>
<td>5</td>
</tr>
<tr>
<td>A 100</td>
<td>Application</td>
<td>5</td>
</tr>
<tr>
<td>A 200</td>
<td>Class notations</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>Definitions</td>
<td>5</td>
</tr>
<tr>
<td>B 100</td>
<td>Definition, main parameters</td>
<td>5</td>
</tr>
<tr>
<td>B 200</td>
<td>Definitions and characteristics, systems and components</td>
<td>6</td>
</tr>
<tr>
<td>B 300</td>
<td>Abbreviations</td>
<td>7</td>
</tr>
<tr>
<td>B 400</td>
<td>International recommendations, standards and references</td>
<td>7</td>
</tr>
<tr>
<td>C</td>
<td>Information and Documentation</td>
<td>9</td>
</tr>
<tr>
<td>C 100</td>
<td>General</td>
<td>9</td>
</tr>
<tr>
<td>C 200</td>
<td>In-service requirements</td>
<td>9</td>
</tr>
<tr>
<td>Sec. 2</td>
<td>Class notation CLEAN</td>
<td>12</td>
</tr>
<tr>
<td>A</td>
<td>Introduction</td>
<td>12</td>
</tr>
<tr>
<td>A 100</td>
<td>General</td>
<td>12</td>
</tr>
<tr>
<td>B</td>
<td>Emissions to Air</td>
<td>12</td>
</tr>
<tr>
<td>B 100</td>
<td>General</td>
<td>12</td>
</tr>
<tr>
<td>B 200</td>
<td>NOx Emissions</td>
<td>12</td>
</tr>
<tr>
<td>B 300</td>
<td>SOx emissions</td>
<td>13</td>
</tr>
<tr>
<td>B 400</td>
<td>Refrigerants</td>
<td>13</td>
</tr>
<tr>
<td>B 500</td>
<td>Cargo evaporation</td>
<td>15</td>
</tr>
<tr>
<td>B 600</td>
<td>Fire fighting substances</td>
<td>15</td>
</tr>
<tr>
<td>B 700</td>
<td>Shipboard incinerators</td>
<td>15</td>
</tr>
<tr>
<td>C</td>
<td>Discharges to Sea</td>
<td>15</td>
</tr>
<tr>
<td>C 100</td>
<td>General</td>
<td>15</td>
</tr>
<tr>
<td>C 200</td>
<td>Residues of cargo oil and chemicals</td>
<td>15</td>
</tr>
<tr>
<td>C 300</td>
<td>Cargo handling</td>
<td>15</td>
</tr>
<tr>
<td>C 400</td>
<td>Oil bunkering arrangement</td>
<td>16</td>
</tr>
<tr>
<td>C 500</td>
<td>Ballast water</td>
<td>16</td>
</tr>
<tr>
<td>C 600</td>
<td>Bilge water</td>
<td>17</td>
</tr>
<tr>
<td>C 700</td>
<td>Garbage</td>
<td>17</td>
</tr>
<tr>
<td>C 800</td>
<td>Sewage</td>
<td>17</td>
</tr>
<tr>
<td>C 900</td>
<td>Antifouling</td>
<td>17</td>
</tr>
<tr>
<td>C 1000</td>
<td>Oil/Water interfaces</td>
<td>17</td>
</tr>
<tr>
<td>D</td>
<td>Other Aspects</td>
<td>18</td>
</tr>
<tr>
<td>D 100</td>
<td>Environmental responsibilities</td>
<td>18</td>
</tr>
<tr>
<td>Sec. 3</td>
<td>Class notation CLEAN DESIGN</td>
<td>19</td>
</tr>
<tr>
<td>A</td>
<td>Introduction</td>
<td>19</td>
</tr>
<tr>
<td>A 100</td>
<td>General</td>
<td>19</td>
</tr>
<tr>
<td>B</td>
<td>Emissions to Air</td>
<td>19</td>
</tr>
<tr>
<td>B 100</td>
<td>General</td>
<td>19</td>
</tr>
<tr>
<td>B 200</td>
<td>NOx Emissions</td>
<td>19</td>
</tr>
<tr>
<td>B 300</td>
<td>SOx emissions</td>
<td>19</td>
</tr>
<tr>
<td>B 400</td>
<td>Refrigerants</td>
<td>20</td>
</tr>
<tr>
<td>B 500</td>
<td>Cargo evaporation</td>
<td>20</td>
</tr>
<tr>
<td>B 600</td>
<td>Fire fighting substances</td>
<td>20</td>
</tr>
<tr>
<td>B 700</td>
<td>Shipboard incinerators</td>
<td>20</td>
</tr>
<tr>
<td>C</td>
<td>Discharges to Sea</td>
<td>20</td>
</tr>
<tr>
<td>C 100</td>
<td>General</td>
<td>20</td>
</tr>
<tr>
<td>C 200</td>
<td>Residues of cargo oil and chemicals</td>
<td>21</td>
</tr>
<tr>
<td>C 300</td>
<td>Cargo handling</td>
<td>21</td>
</tr>
<tr>
<td>C 400</td>
<td>Oil bunkering arrangement</td>
<td>21</td>
</tr>
<tr>
<td>C 500</td>
<td>Ballast water</td>
<td>21</td>
</tr>
<tr>
<td>C 600</td>
<td>Bilge water and oil residues (sludge)</td>
<td>21</td>
</tr>
<tr>
<td>C 700</td>
<td>Garbage</td>
<td>22</td>
</tr>
<tr>
<td>C 800</td>
<td>Sewage</td>
<td>23</td>
</tr>
<tr>
<td>C 900</td>
<td>Antifouling</td>
<td>23</td>
</tr>
<tr>
<td>C 1000</td>
<td>Oil/water interfaces</td>
<td>23</td>
</tr>
<tr>
<td>C 1100</td>
<td>Stern tube bearing lubricants</td>
<td>23</td>
</tr>
</tbody>
</table>
SECTION 1
GENERAL

A. Classification

A 100 Application

101 The rules in this chapter state requirements for design and equipment reducing the environmental impact from emissions to air, discharges to sea, and deliveries to shore from vessels. The requirements are in compliance with or more extensive than those found in international standards currently in force. Vessels complying with the requirements in this chapter may be given the class notation CLEAN or CLEAN DESIGN.

102 The rules aim at attaining a vessel with controlled environmental standards of design and performance. Compliance with the rules shall be verified through inspection, measurements and sampling of defined environmental parameters in accordance with the requirements of the rules in this chapter and in compliance with identified standards and guidelines.

103 Effects and parameters covered are described in B100 by reference to technical standards and installations, and their operation.

104 Vessels with class notations covered by this chapter shall comply with the requirements specified in Table A1.

B. Definitions

B 100 Definition, main parameters

101 Emissions to air

All emissions to air which are caused by or needed for the operation of the vessel, energy consumers, cargo, passengers, and crew on board a vessel, and any toxic emissions caused by operation, protection and conservation of vessel or cargo.

102 Discharges to sea

All discharges to sea which are caused by or needed for operation of the vessel, energy consumers, cargo, passengers, and crew on board a vessel, and any toxic discharges caused by protection and conservation of vessel or cargo.

103 Deliveries to shore

Table A1 Requirements for vessels with class notations CLEAN or CLEAN DESIGN

<table>
<thead>
<tr>
<th>Subject</th>
<th>CLEAN</th>
<th>CLEAN DESIGN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vessels 1) shall be enrolled in an emergency response scheme administered by the Society, or another recognized classification society</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Vessels shall hold class notation, NAUT-AW, see Ch.8. or NAUT-OSV(A), see Ch.20</td>
<td>Not required</td>
<td>Yes</td>
</tr>
<tr>
<td>Vessels shall hold class notation RECYCLABLE or equivalent statement of compliance from another recognized classification society</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

1) Dry cargo vessel less than 3000 GT and vessels designed for offshore operations with class notation SF or better damage stability do not need to meet this requirement.
Delivery of potential pollutants to shore facilities, for controlling, disposal, recycling etc.

104 Port
The vessel is considered in port from ordering “stand by” prior to entering port to ordering “full ahead” when leaving the port. The time will be confirmed by entries in the vessel's logbook.

105 SO₂ emission control area (ECA Emission Control Area)
SO₂ emission control areas are defined in the revised MARPOL Annex VI and in the EU Sulphur Directive 99/32/EC as amended (2005/33/EC) with proposed amendments.

B 200 Definitions and characteristics, systems and components

201 Ballast water
Water with its suspended matter taken on board a vessel to control trim, list, draught, stability or stresses of the vessel.

202 Ballast water management system
Any system which processes ballast water such that it meets or exceeds the Ballast Water Performance Standard in Regulation D-2 in the Ballast Water Management Convention. The BWMS includes ballast water treatment equipment, all associated control equipment, monitoring equipment and sampling facilities.

203 Cargo handling systems
Cargo handling systems comprise:

— Cargo tank vents for tankers with cargoes where evaporation may occur during loading, transport and discharge. (e.g.: Tanker for Oil, Tanker for Chemicals, Tanker for Liquefied Gas, Tanker for Oil Products, Offshore Supply Vessels and Well Stimulation Vessels)
— Pumping and piping systems for tankers carrying cargoes that may cause global or local pollution.

204 Residues of cargo oil and chemicals
Remains of cargo (oil or chemical contaminated water from cargo tank area, slop tanks and cargo pump room).

205 Fire-fighting media
Active fire-fighting media used in fixed fire-fighting systems.

206 Garbage
Garbage includes all kinds of provisions, domestic and operational waste excluding fresh fish and parts thereof, generated during normal operation of the vessel and liable to be disposed of continuously or periodically except those substances excluded specifically. Cargo residues from dry cargo vessels are considered as garbage. Sewage and waste oils are defined separately and not as garbage.

207 Antifouling systems
A coating, paint, surface treatment, surface, or device used to control or prevent attachment of un-wanted organisms.

208 Refrigerants
Refrigerant media used in cargo refrigeration plants, air conditioning and refrigeration systems onboard all vessels, including domestic stand alone units.

209 Sewage (black water)

— drainage and other wastes from all toilets and urinals
— drainage from medical premises (dispensary, sick bay) via wash basins, wash tubs and scuppers located in such rooms
— drainage from spaces containing living animals, or
— other waste waters when mixed with any of the drainage systems defined above.

210 Grey Water
— Drainage from dishwasher, galley, shower, laundry, bath, washbasin drains and WC scuppers.

211 Oil residue (sludge”)
The residual waste oil products generated during the normal operation of a vessel such as those resulting from the purification of fuel or lubricating oil for main or auxiliary machinery, separated waste from oil filtering equipment, waste oil collected in drip trays, and waste hydraulic and lubricating oils. Waste oils may be dealt with onboard, or pumped ashore. Cargo oil residues in slop tanks, see 204, are considered separate from operational waste oils.
212 Oil residue (sludge) tank
A tank which holds oil residues (sludge) from which sludge may be disposed directly through the standard discharge connection or any other approved means of disposal.

213 Oily bilge water
Water which may be contaminated by oil resulting from things such as leakage or maintenance work in machinery spaces. Any liquid entering the bilge system, bilge piping, tank top or bilge holding tanks is considered oily bilge water.

214 Oily bilge water holding tank
Means a tank collecting oily bilge water prior to its discharge, transfer or disposal.

215 Food Waste
Any spoiled or unspoiled victual substances, such as fruits, vegetables, dairy products, poultry, meat products, food scraps, food particles and all other materials contaminated by such wastes, generated onboard ship, principally in the galley and dining areas.

216 NO\textsubscript{x}-abatement technology
A system for the purpose of reducing NO\textsubscript{x} emissions to air.

217 SO\textsubscript{x}-abatement technology
An exhaust gas cleaning system for the purpose of removing SO\textsubscript{x} from the exhaust (e.g. scrubbers).

B 300 Abbreviations

BCH Code: Code for the Construction and Equipment of Ships Carrying Dangerous Chemicals in Bulk (Bulk Chemical Code)
CFC: Chlorofluorocarbons
CFR: Code of Federal Regulations
GWP: Global warming potential. (CO\textsubscript{2} = 1, time horizon 100 years)
HCFC: Hydrochlorofluorocarbons
HFC: Hydrofluorocarbons
IACS: International Association of Classification Societies.
IAPP Certificate: International Air Pollution Prevention Certificate
IBC Code: The International Code for the Construction and Equipment of Ships Carrying Dangerous Chemicals in Bulk
IOPP Certificate: International Oil Pollution Prevention Certificate
ISO: International Organisation for Standardisation
IMO: International Maritime Organisation
MARPOL or MARPOL 73/78: The International Convention for the Prevention of Pollution from Ships, 1973 as modified by the Protocol of 1978 thereto
MSC: Maritime Safety Committee (IMO)
MEPC: Maritime Environmental Protection Committee (IMO)
NO\textsubscript{x}: Oxides of nitrogen
ODP: Ozone depleting potential. (Compared to CFC 11)
SCR: Selective Catalytic Reduction.
SO\textsubscript{x}: Oxides of sulphur
ECA: Emission Control Areas
TBT: Tributyltin (active ingredient in antifouling paint)
TEWI: Total environmental warming impact.
USCG: US Coast Guard
VOC: Volatile organic compound.

B 400 International recommendations, standards and references

401 International recommendations, standards and references have been used as foundation for the rules, although the rule requirements may be more stringent. When setting the emission and discharge limits, and determining the measuring procedure, due consideration has been given to technical and practical limitations inherent in the design and construction of different types of vessels.

402 International recommendations, standards and references with provisions used by the Society when developing the rules are reflected in the references specified in 403 to 412. Unless a particular edition is
explicitly referred to, the latest edition of each standard applies.

403 General references

Generally the rules refer to applicable parts of Annexes I, II, IV, V and VI of MARPOL 73/78 consolidated edition 2006. Other references for specific areas are given in 404 to 412.

404 Antifouling paint

Requirements for restrictions to use of TBT in antifouling paint refer to International Convention on the Control of Harmful Anti Fouling Systems, adopted by IMO in October 2001 (AFS/CONF/26).

405 Ballast water

Requirements for restrictions to transfer of harmful organisms in ballast water refer to International Convention for the Control and Management of Ships' Ballast Water and Sediments, 2004 (BWM/CONF/36).

406 Cargo handling vapour emission control systems

Following references are used:

— IMO Standards for Vapour Emission Control Systems, MSC/Circ.585 and revised MARPOL Annex VI, reg. 15
— USCG Title 46, CFR Part 39.

407 Marine diesel engines

IMO’s “NOx Technical Code” (IMO MP Conf. 3/35 Res. 2)).

408 Marine fuel oil sulphur content

— Revised MARPOL Annex VI, and
— the EU Sulphur Directive 2005/33/EC.

Marine fuel oils shall be specified and tested according to Table B1.

<table>
<thead>
<tr>
<th>Table B1</th>
<th>Marine fuel oils and sulphur emissions – Specification and testing references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling</td>
<td>IMO guidelines resolution MEPC.182(59) Guidelines for the sampling of fuel oil for determination of compliance with the revised MARPOL Annex VI</td>
</tr>
<tr>
<td>Test method, fuel sulphur content</td>
<td>ISO 8754 and/or Pr EN ISO 14596</td>
</tr>
<tr>
<td>Test method, emission sulphur content</td>
<td>ISO 7934/ISO 7935/ISO 11632</td>
</tr>
</tbody>
</table>

\(^{1}\) In case of demonstrated non-availability, previous version of ISO 8217(2005) shall be used.

409 Sulphur abatement technologies

If applicable, sulphur abatement technologies should be verified according to Resolution MEPC.184(59) adopted on 17\(^{th}\) July 2009 “Guidelines for on board exhaust gas-\(\text{SO}_x\) Cleaning system”, taking into account local legislation (e.g. EU requirements) and amendments if any.

The sulphur abatement technology must document thoroughly that any waste stream discharged into enclosed ports, harbours and estuaries have no impact on ecosystems, based on criteria communicated by authorities of Port States to the IMO.

410 Refrigerants and fire-fighting media

Refers to “Montreal Protocol on Substances that Deplete the Ozone Layer”.

411 Shipboard incinerators

Refers to IMO res. MEPC.76(40) on Standard specification for shipboard incinerators.

412 Bilge water separators

refers to IMO res. MEPC.107(49).

413 Sewage Treatment Plan

Refers to MEPC. 159(55)
C. Information and Documentation

C 100 General

101 Documentation shall be submitted as required by Table C1.

102 Discharge limiting and monitoring equipment shall be certified or type-approved.

103 For general requirements to documentation, see Pt.0 Ch.3 Sec.1.

104 For a full definition of the documentation types, see Pt.0 Ch. 3 Sec. 2.

C 200 In-service requirements

201 If approved arrangements, equipment or procedures are altered or modified documentation shall be resubmitted for approval.

202 The environmental performance of systems covered by the rules in this chapter shall be verified by inspection, measurements, and sampling, or by other equivalent means in accordance with the requirements of the rules in this chapter and in compliance with identified standards and guidelines. Data shall be gathered and kept onboard in appropriate logbooks for review during periodical surveys as defined in Pt.7 Ch.1 Sec.6 P.

<table>
<thead>
<tr>
<th>Object / Function</th>
<th>Documentation type</th>
<th>Additional description</th>
<th>For approval (AP) or For information (FI)</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vessel</td>
<td>Z260 – Vessel certificate</td>
<td>Anti-Fouling System Statement of Compliance</td>
<td>FI</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>Z260 – Vessel certificate</td>
<td>Certificate or Statement of Compliance for Inventory of Hazardous Materials</td>
<td>FI</td>
<td>DESIGN</td>
</tr>
<tr>
<td></td>
<td>Z260 – Vessel certificate</td>
<td>International Sewage Pollution Prevention Certificate</td>
<td>FI</td>
<td>All</td>
</tr>
<tr>
<td>Electric power shore connection</td>
<td>E020 – Principal cable routing sketch</td>
<td></td>
<td>FI</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>E170 – Electrical schematic drawing</td>
<td></td>
<td>FI</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>Z060 – Functional description</td>
<td></td>
<td>FI</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>Z110 – Data sheet</td>
<td>Technical data for major components. Setting of protections.</td>
<td>FI</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>Z140 – Test procedure for quay and sea trial</td>
<td>Including vessel - harbour control signal interface.</td>
<td>FI</td>
<td>All</td>
</tr>
<tr>
<td>Fuel and lubrication oil systems</td>
<td>H210 – Protected tank location drawing</td>
<td>Applicable for all tanks containing oil or oil based liquids.</td>
<td>AP</td>
<td>DESIGN</td>
</tr>
<tr>
<td>Fuel oil system</td>
<td>Z160 – Operation manual</td>
<td>Including bunkering procedures.</td>
<td>AP</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>Z160 – Operation manual</td>
<td>Management plan for control of SOx emissions, including details of SOx control methods.</td>
<td>AP</td>
<td>All</td>
</tr>
<tr>
<td>Incinerator</td>
<td>Z280 – Type approval certificate</td>
<td></td>
<td>FI</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>C020 – Assembly or arrangement drawing</td>
<td></td>
<td>FI</td>
<td>DESIGN</td>
</tr>
<tr>
<td>Ballast system</td>
<td>Z230 – Ballast water management plan</td>
<td></td>
<td>AP</td>
<td>All</td>
</tr>
<tr>
<td>Ballast water treatment system</td>
<td>Z280 – Type approval certificate</td>
<td></td>
<td>FI</td>
<td>DESIGN</td>
</tr>
<tr>
<td>Sewage system</td>
<td>S010 – Piping diagram</td>
<td>Sewage management plan including sewage discharge log.</td>
<td>AP</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>Z160 – Operation manual</td>
<td></td>
<td>AP</td>
<td>All</td>
</tr>
<tr>
<td>Table C1 – Documentation requirements (Continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garbage disposal system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z160 – Operation manual</td>
<td>Garbage management plan with garbage record book.</td>
<td>AP</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Z030 – System arrangement plan</td>
<td>Incinerators and garbage handling arrangement.</td>
<td>AP</td>
<td>DESIGN</td>
<td></td>
</tr>
<tr>
<td>Hazardous materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M080 – Inventory of hazardous materials</td>
<td></td>
<td>AP</td>
<td>DESIGN</td>
<td></td>
</tr>
<tr>
<td>Greenhouse gas handling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S010 – Piping diagram</td>
<td>Refrigeration and air conditioning systems.</td>
<td>AP</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Z100 – Specification</td>
<td>Fire fighting systems, including data sheet for extinguishing media.</td>
<td>FI</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Z110 – Data sheet</td>
<td>Refrigerants.</td>
<td>FI</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Z160 – Operation manual</td>
<td>Refrigerant management procedures.</td>
<td>AP</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>NO\textsubscript{x} emission prevention</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S010 – Piping diagram</td>
<td>Cleaning system and Selective catalytic reduction system.</td>
<td>AP</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Z030 – System arrangement plan</td>
<td>Cleaning system and Selective catalytic reduction system.</td>
<td>AP</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Z160 – Operation manual</td>
<td>NO\textsubscript{x} reducing device technical manual.</td>
<td>AP</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Z241 – Measurement report</td>
<td>Test procedure and measurement results for NO\textsubscript{x} emission.</td>
<td>AP</td>
<td>DESIGN</td>
<td></td>
</tr>
<tr>
<td>Z270 – Product certificate</td>
<td>Including 'Technical files' for all diesel engines.</td>
<td>FI</td>
<td>DESIGN</td>
<td></td>
</tr>
<tr>
<td>Z270 – Product certificate</td>
<td>EIAPP certificates for applicable diesel engines, applicable for vessels keel laid or with major engine conversion after 2000-01-01.</td>
<td>FI</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>SO\textsubscript{x} emission prevention</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S010 – Piping diagram</td>
<td>Exhaust gas SO\textsubscript{x} cleaning system.</td>
<td>AP</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Z030 – System arrangement plan</td>
<td>Exhaust gas SO\textsubscript{x} cleaning system.</td>
<td>AP</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Z160 – Operation manual</td>
<td>Exhaust gas SO\textsubscript{x} cleaning system.</td>
<td>AP</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Oil pollution prevention</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z180 – Maintenance manual</td>
<td>Oil / water interface oil consumption log.</td>
<td>FI</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Z030 – System arrangement plan</td>
<td>Cargo and non-cargo manifold areas, including drip trays and oil spill prevention arrangements.</td>
<td>AP</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Z231 – Bilge water and sludge management plan</td>
<td></td>
<td>AP</td>
<td>DESIGN</td>
<td></td>
</tr>
<tr>
<td>Cargo piping system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z030 – System arrangement plan</td>
<td>Side view of manifold arrangement.</td>
<td>AP</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Z030 – System arrangement plan</td>
<td>Means to support hoses in way of ship's side abreast of manifolds.</td>
<td>AP</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Vapour handling and recovery system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z270 – Product certificate</td>
<td>Alternatively, a statement of compliance with IMO MSC/Circ.585 or USCG's regulations CFR 46 Pt. 39.</td>
<td>FI</td>
<td>All</td>
<td></td>
</tr>
<tr>
<td>Cargo storing arrangements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H210 – Protected tank location drawing</td>
<td>Applicable for all tanks containing oil or oil based liquids.</td>
<td>AP</td>
<td>DESIGN</td>
<td></td>
</tr>
<tr>
<td>Cargo compartments cleaning system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S110 – Shadow diagram</td>
<td></td>
<td>AP</td>
<td>DESIGN</td>
<td></td>
</tr>
<tr>
<td>Object</td>
<td>Certificate type</td>
<td>Additional description</td>
<td>Qualifiers</td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------------------------</td>
<td>------------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Bilge separator</td>
<td>DNV type approval certificate</td>
<td></td>
<td>DESIGN</td>
<td></td>
</tr>
<tr>
<td>Oily bilge water control and</td>
<td>DNV type approval</td>
<td>5 ppm alarm.</td>
<td>DESIGN</td>
<td></td>
</tr>
<tr>
<td>monitoring system</td>
<td>certificate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SECTION 2
CLASS NOTATION CLEAN

A. Introduction

A 100 General

101 The rules in this section cover emissions to air and give requirements for emissions to air from energy producers, cargo-handling systems and service systems on board the vessel. References are made to national and international recommendations, standards and guidelines on emission criteria in relation to the protection of the environment.

102 The rules in this section cover discharges to sea giving requirements for discharges to sea from energy producers, lubrication and hydraulic systems, cargo/passenger handling systems, waste/sewage systems, underwater antifouling systems and ballast water systems on board vessels. References are made to national and international recommendations, standards and references on discharge criteria in relation to protection of the environment.

103 Documentation required to be submitted for approval and verification of compliance with the rules is specified in Sec.1 C100.

B. Emissions to Air

B 100 General

101 All fuel oils intended for use onboard shall meet the following requirements:

a) The fuel shall not contain inorganic acid.

b) The fuel shall not include any added substances or chemical waste which either jeopardises safety of the vessel or the performance of the machinery, is harmful to personnel, or contributes to additional air pollution. This shall not preclude incorporation of small amounts of additives intended to improve some aspects of performance.

102 Fuel oil management and control shall be carried out in accordance with a fuel oil management plan and fuel oil log.

103 The Fuel Oil Management Plan shall include description of the fuel oil quality according to 101, sulphur content in the fuel used on board and shall document the qualities of the fuel ordered and the qualities of the received fuel as described by the bunker delivery note, see revised MARPOL 73/78/97, Annex VI, reg. 18.5 and 18.6, and 99/32/EU with amendments.

104 The Fuel Oil Management plan shall incorporate adequate fuel change over procedure to ensure that the fuel utilised at the time when entering a SOx restriction area is of the required quality. Relevant log books shall provide proof that the fuel of the required quality has been utilized in the relevant areas.

105 The bunker delivery note shall be accompanied by a representative sample of the fuel delivered, sealed and signed by the supplier’s representative and the master or officer in charge of the bunker operation. The bunker delivery note shall be retained on board for three years. The fuel sample shall be retained under the vessel’s control until the fuel is consumed but not for less than twelve months after the time of delivery.

106 The sampling equipment and test procedures shall comply with the IMO guideline for sampling, based on the standards referred to in Table B1, Sec.1 B408, or equivalent.

B 200 NOx Emissions

201 Engine emissions for diesel engines with a power output >130 kW installed on all vessels shall comply with Tier II, MARPOL limits. The maximum limits for NOx per kWh, dependent on engine type as identified by engine r.p.m., is specified in Table B1.

<table>
<thead>
<tr>
<th>Table B1 Maximum limits for NOx per kWh as function of engine RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>n < 130 RPM</td>
</tr>
<tr>
<td>130 < n < 2000 RPM</td>
</tr>
<tr>
<td>n > 2000 RPM</td>
</tr>
</tbody>
</table>

202 For engines where NOx reduction systems are fitted, the system shall be operated and controlled in accordance with procedures incorporating the manufacturer instructions. The system and the relevant NOx
reducing device Technical Manual (NTM) shall comply with the appropriate IMO guidelines and it will be subject to approval.

Guidance note:

NOₓ level measurements

NOₓ level measurements on diesel engines, with or without NOₓ reduction arrangements, should comply with the methods specified in IMO NOₓ Technical Code referred to from revised MARPOL 73/78 Annex VI, or other equivalent methods accepted by the Society. Measurements and tests should be documented, as required by the Society. Where documentation shall be applied for class notation only, independent third party witnessing and verification of tests may be waived.

Engine modification and adjustments

NOₓ reductions by modification of engine parameters, water injection, fuel/water emulsification and/or by adjusting engine settings in order to influence the combustion characteristics, should be specified by the engine manufacturer and carried out under his supervision. The chosen combination of modifications and adjustments should aim to avoid an increase in the engine’s fuel consumption. The engine shall not be adjusted outside the allowable ranges as specified in the Technical File (where applicable) unless a Direct Measurement and Monitoring device has been fitted and approved by the Society.

Descriptions of any changes affecting the designated engine parameters, including adjustments, parts replacements and modifications to engine parts, shall be recorded chronologically in an engine's record book of engine parameters.

Selective Catalytic Reduction (SCR)

Any requirements related to engine performance where SCR-systems are fitted should be identified and addressed in the required documentation as specified in Sec.1 C100. The relevant documentation should also identify operational temperature limits. The reducing agent and the relevant consumptions should be specified by the manufacturer. If other agent than urea-solution is used, this will be subjected to special consideration.

In the case where the NOₓ emission level is used to verify or control the reduction agent injection rate, the level should be detected by an analyser. Measuring equipment used for this purpose should be according to NOₓ Technical Code 2008 (edition 2009).

---end---of---Guidance---note---

B 300 SOₓ emissions

301 The requirements in B300 shall apply to any fuel consumed onboard, including but not limited to fuel for diesel engines, boilers, incinerators.

Guidance note:

Incineration of sludge is not subject to the requirement in B300.

---end---of---Guidance---note---

302 SOₓ emission limits are generally achieved by use of low sulphur content fuel oil. The maximum sulphur content in fuel oil carried onboard is 3.00% S.

303 When in ports or in SOₓ–controlled areas, the allowable maximum sulphur content in fuel oil used is 1.00% S. Changes of fuel type when entering and leaving port, or other SOₓ-controlled areas, shall be documented by entries in the vessel’s logbook.

304 In areas with local regulations for sulphur content in fuel the stricter requirement shall apply. Changes of fuel type to comply with local regulations shall be documented by entries in the vessel log book.

305 As an alternative to the requirements in items 302, 303 and 304, engines can control the emission of SOₓ through an exhaust gas cleaning system or by other methods according to Regulation 4 of revised MARPOL Annex VI. The SOₓ content of the exhaust gas shall be verified in accordance with relevant standards (Resolution MEPC 184(59) adopted on 17 July 2009). Such equivalent system shall be dimensioned to ensure continuous compliance when and where operating.

306 When in ports and where applicable, as an alternative to the use of Low Sulphur Fuel, the vessel can use shore connection. In this case requirements as listed in Section 4 shall be fulfilled.

B 400 Refrigerants

401 The emission criteria for refrigerants apply to cargo refrigeration plants, centralised air conditioning and refrigeration systems onboard all vessels. Domestic type stand-alone air conditioning units and refrigerators need to comply with 402, 403 and 404 only.

Guidance note:

Domestic type stand alone units are typically cabin refrigerators, water coolers, ice machines, small air-conditioning units, vending machines, etc.

---end---of---Guidance---note---

402 The emission criteria for refrigerants are limited to requirements related to the properties of the refrigerant used with respect to its ozone depleting potential and to its global warming potential (ODP/GWP)
as defined by the 1987 Montreal Protocol on Substances that Deplete the Ozone Layer.

403 The use of ozone depleting substances is not permitted. The refrigerant may be any of the following:

 — HFC
 — Natural refrigerants such as NH₃ or CO₂.

The used refrigerant shall comply with: GWP < 3500.

Guidance note:
As an alternative to GWP < 3500 documented equivalent TEWI (Total Equivalent Warming Impact) may be accepted.

404 A list of all refrigerant systems onboard defined in 401 shall be included in the refrigerant management plan.

405 Refrigerant systems shall have suitable means of isolation to allow maintenance without releasing any bulk quantity of the refrigerant to the atmosphere. Isolating valves should be provided to permit compressor removal and replacement without loosing the refrigerant charge. A suitable permanent valve for a recovery connection should be provided on all appliances.

Unavoidable minimum releases associated with recapture or recycling are acceptable provided recovery units are installed for the evacuation of the system.

406 For refrigerant recovery, compressors shall be capable of evacuating a system charge into a liquid receiver.

When the condenser itself shall be repaired the refrigerant must be transferred to:

1) other condenser(s) inside the system:
 if the system has two or more condensers, when one of them shall be repaired, the others shall have enough capacity to hold the entire charge of the refrigerant system.

2) outside of the refrigerant system:
 a dedicated container of sufficient volume is used to house the largest refrigerant circuit of the unit. This container shall be available and permanently located close to the unit. The procedure for how to use the recovery unit shall also be provided onboard.

Additionally, recovery units and associated equipment shall be provided to facilitate evacuation of the system either into existing liquid receivers or into suitable reservoirs.

407 Annual refrigerant leakage shall be as small as possible but not more than 10% of the total refrigerant charge for each system. The leakage shall be documented through recorded consumption figures. The figures shall include topping up due to leakage, as well as renewal of refrigerant during repairs or overhauls. The refrigerant log shall at least include: date, system type, refrigerant type, type of failure, initial system charge, refrigerant added, refrigerant recovered, signature type of inspection performed and corrective actions.

If leakage is observed, corrective measures as detailed in the refrigerant management procedure shall be implemented.

408 Where different types of refrigerants are used, measures shall be taken in order to avoid mixing of these substances.

409 Refrigerants in refrigeration systems shall be controlled in a manner suitable for detection of all types of leakage, through a leak detection system with automatic alarm in the space where the refrigerant could leak, in combination with:

 — level measurement in refrigeration system with alarm for low level; or
 — logging refrigerant volumes at regular intervals. As a minimum once per week or
 — Weekly control of leakages by portable refrigerant detector.
 — The log shall be in compliance with the requirements in 407.

Guidance note:
The chosen solution may be in addition to, or in combination with, safety requirements specified in Pt.4 Ch.1. The requirements in this section shall not replace requirements in Pt.4 Ch.1.

410 The chosen method for detecting leakage should be submitted. A refrigerant management procedure must be implemented, covering as a minimum the following:

 — how to monitor the refrigerant system with respect to possible leaks
 — how often any such monitoring shall take place
 — limits for when corrective actions shall be initiated.
 — Procedures detailing the means to control, leakage, venting and disposal of refrigerants.
B 500 Cargo evaporation

501 The criteria for emissions from cargo evaporation apply for tankers carrying crude oil, petroleum products or chemicals with flash point less than 60°C. These emissions are defined as volatile organic compounds, VOC.

502 Vessels shall comply with the revised MARPOL Annex VI Regulation 15.

503 Tanker for oil or oil products and tanker for chemicals shall hold a valid class notation VCS-2, see Ch. 10 Sec. 1 A200.

B 600 Fire fighting substances

601 Natural substances used in fixed fire fighting systems and extinguishers, are not considered damaging to the atmosphere. If other substances are used in fixed fire fighting systems that may have a global warming potential, the used substance shall comply with:
- GWP < 4000
- ODP = 0.

Guidance note:
- **Natural substances**: e.g. argon, nitrogen, water spray, high expansion foam, CO₂. Note that CO₂ in this context is considered a natural substance without ODP or GWP since it will utilise CO₂ already present in the atmosphere.
- **Other substances**: E.g. industrial substances including Hydrofluorocarbons (HFC) and Sulphur fluorides.

---end-of-Guidance-note---

B 700 Shipboard incinerators

701 When installed onboard, incinerators shall be Type Approved in accordance with IMO res. MEPC.76(40).

702 All use of incinerators shall be in accordance with the revised MARPOL 73/78, Annex VI, reg. 16, and be recorded in the oil record book referred to in MARPOL 73/78 Annex I, reg. 17 and in the garbage record book referred to in MARPOL 73/78, Annex V, reg. 9(3).

C. Discharges to Sea

C 100 General

101 Compliance with the rules in C shall be verified by means and measures as identified in Sec. 1 C. Actual discharges shall be recorded as specified in 200 to 1000.

C 200 Residues of cargo oil and chemicals

201 Discharge criteria for cargo residues apply to tankers carrying crude oil, petroleum products or chemicals.

202 Discharge of contaminated water or cargo residues into the sea shall be limited as far as practicable. Discharges and deliveries to shore shall be documented in the Oil record book, or Cargo record book, for tankers for oil and tankers for chemicals, respectively.

On tankers for chemicals the maximum allowable remaining cargo quantity shall be 0.075 m³ for all pollution categories. The pollution categories are defined in MARPOL Annex II, Regulation 6.

C 300 Cargo handling

301 Tankers for oil or chemicals shall have fitted and implemented means and arrangements to reduce the likelihood of cargo spill on deck reaching the sea.

Gutter plates on both sides of the cargo deck shall be increased in height from a point 0.2 L forward of midship to a termination at the aft end of the cargo deck with the minimum heights given in Table C1.

<table>
<thead>
<tr>
<th>Table C1 Cargo deck gutter plates, minimum heights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vessels greater than 100 000 tonnes DW</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Vessels smaller than 100 000 tonnes DW</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

To avoid cargo flowing around the accommodation/poop deck, a transverse fishplate shall be arranged at the aft end of the cargo area. At the outer end the transverse fishplate shall have the same height as and be connected to the aft end of the gutter plate.
302 For the collection of possible oil spills during cargo operations on tankers for oil, dry cargo, container ship, ro-ro ships and ferries, the main deck in cargo area shall be fitted with a drainage system with discharge to a deck collecting tank or a slop tank. The drainage system may be arranged either with a manually operated valve, or with an automatic deck scupper drainage system.

The drainage shall be used during cargo operations where spillage may occur, and shall not affect normal deck drainage when at sea. When at sea drainage from the deck area shall be ensured to avoid free surface effects with negative impact on the vessel’s stability.

303 On tankers for oil or tankers for chemicals, all cargo manifolds shall be fitted with drip/spill trays with arrangements for draining. The drip/spill trays shall have the following minimum dimensions:

- length: beyond forward and aft ends of the manifold
- width: at least 1.8 m, though such that the spill tray extends at least 1.2 m outboard of the end of the manifold flange
- depth: minimum depth 0.3 m.

304 Tankers for oil or tankers for chemicals shall have fitted means to adequately support hoses in way of vessel's side abreast of manifolds. The support shall preferably be arranged as a horizontal curved plate or pipe section.

305 Tankers for oil or tankers for chemicals shall have fitted a closed sounding system and an overflow alarm which is independent of the closed sounding system.

306 Other vessels carrying oil-containing liquids in bulk shall be equipped with arrangements as specified under Oil bunkering arrangements in C400.

Guidance note:
This applies to e.g. supply vessels and other vessels carrying fuel oils and oil-based mud.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

This requirement does not apply to tanks carrying oily liquids during emergency operations only, e.g. tanks for oil recovered from oil spills at sea.

C 400 Oil bunkering arrangement

401 Fuel oil, lubricating oil, hydraulic oil and other oil bunkering tanks on all vessels shall be equipped with high level alarm to prevent overfilling.

402 Fuel oil, lubricating oil and other oil bunkering stations and other areas where spillage may occur shall be fitted with spill/drip trays to prevent oil escaping to sea. Minimum capacity: 80 litres for vessels between 300 and 1600 GT, 160 litres for vessels larger than 1600 GT. Any spills at the bunker station and overflow through oil tank vent pipes, respectively, shall have a reasonable chance of being trapped by the spill/drip tray.

403 Vent and overflow pipes for fuel oil tanks, lubricating oil tanks, hydraulic oil tanks and overflow tanks shall be fitted with spill/trays with the minimum following capacity: 40 litres for vessels between 300 and 1600 GT, 100 litres for vessels larger than 1600 GT.

The specified minimum volume of the above spill/drip tray shall be obtained under all normal trim and for a maximum heel and trim inclination of +/-15 degrees.

Volume for the pipes shall be deducted from the tray capacity in the volume calculations.

Coaming height shall be minimum 15% of the largest horizontal dimension.

Drawings showing spill/drip trays dimensions and volume calculations shall be submitted for approval.

404 Tanks with no risk of causing environmental contamination due to overfilling need not comply with 401 and 402. Typically this applies to internal tanks, e.g. engine room dirty oil and sludge tanks.

C 500 Ballast water

501 Ballast water discharges from vessels shall comply with the D-1 or D-2 standard of the International Convention for the Control and Management of Ships' Ballast Water and Sediment with amendments and Guidelines.

502 Requirements for the applicable standard given in Pt.6 Ch.18 shall be complied with.

Guidance note:
Requirements for the D-1 standard are given under BWM-E class notation while those for the D-2 standard are given under BWM-T notation.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

503 Vessels with additional class notations BWM-E, BWM-EP or BWM-T (Pt.6 Ch.18), are considered to fulfil the requirements above.
Rules for Ships, January 2011
Pt.6 Ch.12 Sec.2 – Page 17

C 600 Bilge water
601 Discharge criteria for bilge water apply to all vessels as defined by MARPOL 73/78, Annex I, reg. 14 and 15.

602 In addition to requirements specified by MARPOL Annex I, the vessel shall be arranged with a bilge holding tank with facilities for delivery ashore.

C 700 Garbage
701 Disposal criteria and garbage management plan apply to all vessels as regulated by MARPOL, Annex V, reg. 3, 4, 5, 6 and 9.

C 800 Sewage
801 All vessels shall hold a valid International Sewage Pollution Prevention Certificate or a certificate / statement of compliance with MARPOL 73/78 Annex IV.

802 All vessels shall be equipped with an approved sewage comminuting and disinfecting system (see MARPOL 73/78, Annex IV, reg.9), and a sewage holding tank. Sewage shall at least be treated by comminuting and disinfecting system prior to discharging.
Alternatively the vessel shall be equipped with a sewage treatment system. The sewage treatment system shall be type approved (see MARPOL 73/78, Annex IV, reg.9).

803 Discharge requirements from MARPOL Annex IV reg.11 shall be followed. Sewage treatment and discharge shall be carried out according to approved sewage treatment procedures.
Sewage treatment procedure and log shall be included in the sewage management plan. The plan should also include procedure for using the log.

804 Vessels are not allowed to discharge untreated sewage to sea, except for situations where:
— it is necessary in order to save vessel or life at sea, or
— the vessel or its equipment has been damaged and all reasonable precautions have been taken, before and after the discharge, in order to minimize the effects of the discharge.

805 All sewage discharges, whether to sea or to reception facilities shall be recorded with description of date, location and quantity of sewage discharged. Alternatively start and stop of sewage treatment plant may be logged in place of discharged quantity.
In emergency cases where untreated sewage is discharged to sea, the records shall include information on the vessel’s speed and distance to nearest shore at the time of sewage discharge.

806 Sewage system ventilation pipes shall be independent from other ventilation piping systems.

807 Drain from galley shall be fitted with a grease trap, connected to the sludge tank.

C 900 Antifouling
901 The vessel shall carry a Statement of Compliance with International Convention on the Control of Harmful Anti Fouling Systems.

902 Anti fouling paint systems containing TBT as the active ingredient are not permitted.

C 1000 Oil/Water interfaces
1001 Oil/water interfaces considered are:
— tailshaft lubrication
— rudder bearings
— sea water cooled engines
— hydraulically operated equipment.

1002 Oil/water interfaces oil consumption shall be monitored. If evidence of leakage is found, corrective action shall be initiated and recorded in the oil/water interface log.

Guidance note:
The method for monitoring oil/water interface oil consumption may be automatic, or manual. Follow up shall be such that smaller leaks are discovered to enable implementation of corrective action in case such leak is discovered.
This requirement is in addition to the low level alarm for the stern tube lube. oil header tank, ref. Pt.4 Ch.4 Sec.1 Table E1.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

1003 Where non-oil lubricated type bearings are used, no monitoring is required.
D. Other Aspects

D 100 Environmental responsibilities

101 All vessels shall have a responsible Environmental Officer onboard. Name of the officer in charge and relevant duties shall be listed in the Clean Manual. This person shall be responsible for the following:

— compliance with current environmental regulations
— management and control of the procedures and activities relevant to the requirements of this section
— implementation and use of relevant procedures
— upkeep of relevant logs
— training of personnel in relevant environmental practices.

The Environmental Officer may delegate tasks to other personnel but will remain responsible for the environmental conduct of the vessel.
SECTION 3
CLASS NOTATION CLEAN DESIGN

A. Introduction

A 100 General

101 The rules cover areas for emissions to air and discharges to sea similar to those described in Sec.2 A100.

102 In addition, the design of the vessel is covered by the class notation CLEAN DESIGN.

103 Documentation required to be submitted for approval and verification of compliance with the rules is specified in Sec.1 C100.

B. Emissions to Air

B 100 General

101 Compliance with the rules shall be verified by means and measures as identified in Sec.1 C.

102 All fuel oils intended for use onboard shall meet the requirements given in Sec.2 B100.

B 200 NOx Emissions

201 Requirements for NOx emissions from diesel engines apply to all diesel engines with power output in excess of 130 kW, except emergency diesel engines, engines installed in lifeboats and any other device or equipment intended to be used solely in case of emergency.

202 The maximum limits for NOx per kWh, dependent on engine type as identified by engine r.p.m., is specified in Table B1.

203 Equipment, arrangements and documentation for NOx reduction shall be according to Sec.2 B202.

B 300 SOx emissions

301 The requirements in B300 shall apply to any fuel consumed onboard, including but not limited to fuel for diesel engines, boilers, incinerators.

 Guidance note:
 Incineration of sludge is not subject to the requirement in B300.

302 The maximum sulphur content in fuel oil carried onboard is 2.50% S. In case of demonstrated non-availability, fuel with sulphur content of 3.00% can be used.

303 When in ports or in SOx-controlled areas only, the allowable maximum sulphur content in the fuel oil used is 1.00% S. Changes of fuel type when entering and leaving port, or SOx-controlled areas shall be documented by entries in the vessel's logbook.

304 In areas with local regulations for sulphur content in fuel the stricter requirement shall apply. Changes of fuel type to comply with local regulations shall be documented by entries in the vessel's log book.

305 As an alternative to what required in para 302, 303 and 304, engines can control the emission of SOx through an exhaust gas cleaning system or by other methods according to Regulation 4 of revised MARPOL Annex VI. The SOx content of the exhaust gas shall be verified in accordance with relevant standards (Resolution MEPC 184(59)adopted on 17 July 2009). Such equivalent system shall be dimensioned to ensure continuous compliance when and where operating.

306 When in ports and where applicable, in alternative to the use of Low Sulphur Fuel, the vessel can use electrical shore connection. In this case requirements as listed in Section 4 shall be fulfilled.

<table>
<thead>
<tr>
<th>Table B1 Maximum limits for NOx per kWh as function of engine RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>n < 130 RPM</td>
</tr>
<tr>
<td>130 < n < 2000 RPM</td>
</tr>
<tr>
<td>n > 2000 RPM</td>
</tr>
</tbody>
</table>
B 400 Refrigerants

401 Emission criteria for refrigerants onboard shall comply with requirements given in Sec.2 B400.

402 The refrigerant shall be either a natural refrigerant (e.g. NH3 or CO2), or alternatively an HFC complying with:

403 GWP ≤ 1890 and ODP = 0.

Guidance note: As an alternative to GWP ≤ 1890 documented equivalent TEWI (Total Equivalent Warming Impact) may be accepted.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

404 Design and operational requirements in Sec.2 B405 through 410 shall be complied with.

B 500 Cargo evaporation

501 Criteria for emissions from cargo evaporation apply to tankers carrying crude oil, petroleum products or chemicals with flash point less than 60°C, similar to those required in Sec.2 B500.

502 Vessels shall comply with the Revised MARPOL Annex VI Regulation 15.

503 Tanker for oil or oil products and tanker for chemicals shall hold a valid class notation VCS-2, see Ch.10 Sec.1 A200.

B 600 Fire fighting substances

601 Natural substances used in fixed fire fighting systems are not considered damaging to the atmosphere. If other substances are used in fixed fire fighting systems that may have a global warming potential, the used substance shall comply with:

GWP < 1650
ODP = 0.

Guidance note: Natural substances: e.g. argon, nitrogen, water spray, high expansion foam, CO2. Note that CO2 in this context is considered a natural substance without ODP or GWP since it will utilise CO2 already present in the atmosphere.

Other substances: E.g. industrial substances including Hydrofluorocarbons (HFC) and Sulphur fluorides.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

B 700 Shipboard incinerators

701 Incinerator shall be installed, unless the vessel will have enough capacity for 100% delivery to shore.

702 Incinerators shall be designed, constructed and operated according to design and operational criteria for incinerators specified in Sec.2 B700.

C. Discharges to Sea

C 100 General

101 Compliance with the rules in C shall be verified by means and measures as identified in Sec.1 C. Actual discharges shall be recorded as specified in Sec.1 C.

102 Vessels with class notations Tanker for Oil or Tanker for Chemicals shall as a minimum have a double skin arrangement in the cargo area complying with MARPOL 73/78, Annex I, reg. 19, 20 and 21. Tank-and piping arrangement and hull subdivision shall be such that ballast tanks or piping systems are not contaminated by cargo.

103 Vessels with class notation Tanker for Oil with the deadweight of less than 5000 tonnes shall as a minimum have a double skin arrangement in the cargo area complying with the dimensions given in MARPOL 73/78, Annex I, reg. 19.6. Single skin cargo wing tanks are not accepted.

104 Hull arrangement including cargo tanks for other vessels carrying oil-containing liquids in bulk shall comply with requirements in D100.

Guidance note: This applies to e.g. supply vessels and other vessels carrying fuel oils and oil-based mud.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---
C 200 Residues of cargo oil and chemicals

201 General requirements to discharge of cargo residues are as given in Sec.2 C200.

On tankers for chemicals the maximum allowable remaining cargo quantity shall be 0.05 m3 for pollution categories X, Y and Z. The pollution categories are defined in MARPOL Annex II, Regulation 6.

202 Cargo tanks shall be designed with smooth surfaces and be equipped with cargo wells, or equivalent, for efficient stripping.

Guidance note:
Under-deck longitudinals of slab type are acceptable. Horizontal areas on stiffeners and brackets should be avoided, if possible. Horizontally corrugated bulkhead plating is acceptable with maximum angle of corrugations being 65°. Vertical girders in horizontally corrugated bulkheads will be accepted.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

203 Where applicable on tankers for oil, the COW efficiency shall be such that coverage of minimum 96% is obtained, as documented by shadow diagrams.

C 300 Cargo handling

301 Tankers for oil or chemicals shall have fitted and implemented means and arrangements to reduce the likelihood of cargo spill on deck reaching the sea, as given in Sec.2 C301.

302 For the collection of possible oil spills during cargo operations on tankers for oil the tank deck area shall be fitted with a closed drainage system with discharge to a deck collecting tank or a slop tank. The drainage system may be arranged either with a manually operated valve, or with an automatic deck scupper drainage system.

The drainage shall be used during cargo operations where spillage may occur, and shall not affect normal deck drainage when at sea. When at sea, drainage from the deck area shall be ensured to avoid free surface effects with negative impact on the vessel’s stability.

303 On tankers for oil or tankers for chemicals, all cargo manifolds shall be fitted with drip/spill trays with the minimum dimensions as given in Sec.2 C300.

Manifold connections and spill trays shall be fitted with adequate means for closed drainage to a deck collecting tank or slop tank.

304 Tankers for oil or tankers for chemicals shall have fitted means to adequately support hoses in way of vessel's side abreast of manifolds, as given in Sec.2 C300.

305 Tankers for oil or tankers for chemicals shall have fitted a closed sounding system and an overflow alarm which is independent of the closed sounding systems.

306 Other vessels carrying oil-containing liquids in bulk shall be equipped with arrangements as specified in Sec.2 C306.

C 400 Oil bunkering arrangement

401 Fuel oil, lubricating oil and other oil bunkering arrangements shall be as given in Sec.2 C400.

402 Spill/drip trays shall be fitted with closed drainage to a deck collecting tank or slop tank.

C 500 Ballast water

501 Ballast water discharges from vessels shall comply with the D-2 standard of the International Convention for the Control and Management of Ships’ Ballast Water and Sediment with amendments and Guidelines.

502 Requirements for the applicable standard given in Pt.6 Ch.18 shall be complied with.

Guidance note:
Requirements for the D-2 standard are given under BWM-T notation.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

503 Vessels with additional class notations BWM-T (see P.6 Ch.18), are considered to fulfil the requirements above.

C 600 Bilge water and oil residues (sludge)

601 All parts of the bilge water system and sludge system, including pipes, valves, pumps and oil water filtering/separating equipment shall be fitted with labels/colour codes in order to easily identify the different piping systems.

602 The bilge alarm shall be calibrated every 2.5 years at IOPP or Class Certificate intermediate and renewal surveys and set to 5 ppm. Calibration Certificate for 5ppm bilge alarm shall be available onboard for inspection
all the time.

603 Bilge water separator and bilge alarm combined with an automatic stopping device shall be provided for all vessels irrespective of size in a way that no overboard effluent contains more than 5ppm of oil products and oil burning contaminants.

604 There should be no interconnections between the sludge tank discharge piping and bilge water piping other than possible common piping leading to the standard discharge connection. Drainages from machinery spaces and other spaces where the oil contaminated water may be present, shall not be pumped directly overboard but be kept in bilge tank(s) for discharge ashore and/or pumped overboard through the 5ppm bilge alarm.

605 The effluent for the 5 ppm bilge alarm should be capable of being returned to the bilge water tank (recycling line).

606 The minimum total capacity of the bilge water tank(s) shall be as given in Table E1.

<table>
<thead>
<tr>
<th>Main engine rating (kW)</th>
<th>Minimum Capacity (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 1000</td>
<td>4</td>
</tr>
<tr>
<td>Above 1000 up to 20 000</td>
<td>P/250</td>
</tr>
<tr>
<td>Above 20 000</td>
<td>40 + P/500</td>
</tr>
<tr>
<td>P = main engine rating in kW.</td>
<td></td>
</tr>
</tbody>
</table>

607 Bilge system of the vessel shall contain Bilge Settling Tank in addition to Bilge Holding tank. Means for surface decanting and bottom sediments drainage leading through the hopper into the sludge tank shall be provided.

608 Boiler soot cleaning and blow down shall lead into the bilge tank or the separate tank installed for this purpose with discharge to overboard through the Bilge Water Separator or to shore facilities.

609 A Processed Clean Bilge Water Tank may be fitted in order to store water that has passed through the bilge water separator, but which can not be discharged overboard during the voyage due to local restrictions.

610 Prior to discharge overboard, water from the Processed Clean Bilge Water Tank shall be led through the 5ppm bilge alarm combined with an automatic stopping device by means of a separate Processed Clean Bilge Water Pump.

611 If overboard effluent through 5ppm bilge alarm come from multiple sources (Bilge Water Separator, Processed Clean Bilge Water Pump, etc.) then interlock shall be provided for all these sources in such a way that only one source is able to discharge overboard at one time.

612 All vessels shall be arranged with collecting tanks and systems for handling oil residues including sludge, waste oil, drain oil etc. (oil residue/sludge tank) in accordance with general requirements of Pt.4 Ch.6 Sec.4 M.

613 The oil being discharged from the oil water separator shall be directed to an oil residue (sludge) tank.

614 The sludge tanks should be below the heavy fuel oil and lubricating oil purifiers, if installed. The pipelines from purifiers should, wherever possible, be straight or fitted with a large radius elbow. Drain lines from sludge tanks below purifiers to the bilge tank (or, as an alternative, to the sludge tank) shall be provided with self-closing valves and hoppers.

615 Drain oil shall be collected through fixed drainage arrangement directly to the sludge tanks. If necessary a sludge transfer pump may be used to pump the sludge tank. Drip trays and coamings of sufficient height shall be provided under all equipment where oil spill may be present, such as diesel engines, burners, hydraulic motors, pumps, heaters, coolers, filters and tanks in order to contain spillage of oil.

616 The drip trays and coamings for equipment not fitted with closed drainage to the sludge tanks shall be collected in the oil residue collecting tank and this emptying procedure shall be incorporated into the Bilge Water and Sludge Management Plan.

C 700 Garbage

701 Disposal criteria and other requirements for garbage as given in Sec.2 C700 shall be complied with.

702 The vessel shall be equipped and arranged for sorting, minimising and storing garbage prior to incineration or delivery to shore. Vessels shall have sufficient capacity to allow 100% delivery to shore, or incineration where permitted. The vessel shall be equipped and arranged for sorting, collecting, minimising and storing garbage prior to incineration or delivery to shore.

703 In order to increase the recycling of waste on shore, collecting and storing of garbage onboard the vessel shall as a minimum be separated into the following categories:
— Recyclable waste
— Non-Recyclable waste
— Food waste
— Hazardous waste

704 Depending on the shore based waste management facilities in different areas, non-Recyclable wastes can be considered differently. It is recommended that light bulbs, glasses, plastic coated papers, plastic bags, packing materials and crockery are considered as non-Recyclable wastes.

705 Metals, Aluminium cans, plastic, wood and paper products should be treated as Recyclable wastes. In order to be able to fulfil the MARPOL disposal criteria, plastics shall as a minimum be collected and stored in separate containers or bins.

706 Hazardous waste is considered as any type of waste that should be handled in a special manner in order to avoid or minimize its potential danger to human health or the environment, including but not limited to asbestos, plastics containing PCBs, refrigerants, heavy metals (mercury, lead, cadmium, etc), electronics, batteries, oily rags and paints.

707 Food waste, in any form, shall not be discharged into a vessel’s sewage treatment plant. It is required that ground food waste to be directed to a holding tank when the vessel is operating within an area where discharge is prohibited. If any design can show that systems can handle black/grey water contaminated with ground food, it will be acceptable as alternative to the discharge into a vessel’s sewage treatment plant.

Vessels with class notations Passenger Ship or Car Ferry A (or B) shall not dispose any waste to sea except for food waste when having passed through a grinder or comminuter for food waste and where permitted by international and local legislation.

C 800 Sewage

801 Requirements to sewage discharge and handling as given in Sec.2 C800 shall be complied with, except where superseded by requirements 802 to 804.

802 The vessel shall be equipped with a sewage treatment system. The sewage treatment system shall be type approved according to MEPC.159(55).

803 Grey Water shall be treated in the vessel's Sewage Treatment Plant(s).

804 Vessels sailing in protected areas, like the Black Sea, or in ports where local requirements prohibit any discharge, they shall have sufficient holding capacity to store sewage and grey water onboard. Relevant documentation shall be provided and it will be evaluated case by case, based on vessel type and number of persons the vessel is certified to carry.

Guidance note:
Ballast tank(s) can be used as temporary holding tanks for treated sewage and treated grey water by means of non-permanent connection. The Ballast Tank(s) can be emptied, to sea by the vessel's ordinary ballast pump system, or to standard sewage shore discharge connection on deck, by means of non-permanent connection. (Non-permanent connections (spool-pieces) shall be used in order to have proper separation between ballast system and MARPOL Annex IV System).

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

805 Sewage and grey water holding tank(s) shall be fitted with high level alarm.

C 900 Antifouling

901 Requirements given in Sec.2 C900 shall be complied with.

C 1000 Oil/water interfaces

1001 Requirements to monitoring and control of oil/water interfaces given in Sec.2 C1000 shall be complied with, unless the requirements as listed in Sec.3 C1100 are fulfilled.

C 1100 Stern tube bearing lubricants

1101 The lubricant used for stern tube bearing systems shall be water or biodegradable.

Guidance note:
If biodegradable stern tube oil is used, this will be subject to special consideration. Biodegradable stern tube oils must be classified as “Readily biodegradable” according to test method “OECD 301 A-F” and classified as “non-toxic” according to test method “OECD 201”, “OECD 202” and “OECD 203”. The test must be carried out by an accredited test institute.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

1102 All relevant drawings documenting the installation of water lubricated stern tube arrangement shall be
submitted for approval.

1103 For the other Oil /water interface systems, requirements given in Sec.2 C1000 shall be complied with.

D. Construction and Design

D 100 Oil tank protection

101 The requirements in D100 and D200 apply to tanks for fuel oil, lubricating oil, hydraulic oil and waste oil (sludge), including overflow tanks. Tanks with capacity below 10 m³ can be located in the double bottom provided that the total capacity of these unprotected tanks will be less than 40 m³. The requirements also apply to cargo tanks on vessels coming under regulation 2.2 of MARPOL Annex I.

102 Individual tanks shall not have a capacity of over 1500 m³.

103 Tanks shall be located above the moulded line of the bottom shell plating nowhere less than the distance h as specified below:

\[h = \frac{B}{20} \]

or

\[h = 2.0 \text{ m}, \text{ whichever is the lesser.} \]

The minimum value of \(h \) = 0.76 m.

In turn of the bilge area and at locations without a clearly defined turn of the bilge, the oil fuel boundary line shall run parallel to the line of the midship flat of bottom as shown in Fig.1.

![Fig. 1](image)

104 For vessels having an aggregate oil tank capacity below 5000 m³ tanks shall be located inboard of the moulded line of the side shell plating, nowhere less than the distance w which, as shown in Fig.2, is measured at any cross-section at right angles to the side shell, as specified below:

\[w = 0.4 + 2.4 \frac{C}{20000} \text{ m} \]

Where \(C \) is the vessels total volume of oil tanks, in m³, at 98% tank filling.

The minimum value of \(w \) = 1.0 m, however for individual tanks with an oil capacity of less than 500 m³ the minimum value is 0.76 m.
For vessels with an aggregate oil tank capacity of 5000 m3 and over, tanks shall be located inboard of the moulded line of the side shell plating, nowhere less than the distance w which, as shown in Fig. 2, is measured at any cross section at right angles to the side shell, as specified below:

$$w = 0.5 + C/20000$$

or

$$w = 2.0 \text{ m}, \text{ whichever is the lesser.}$$

The minimum value of $w = 1.0 \text{ m}$.

Combined fuel oil and water ballast tanks shall not be arranged.

The skeg is not to be considered as offering protection for the oil tanks.

For the area within the skeg's width the distance “h” is to be measured perpendicular to a line parallel to the baseline at the intersection of the skeg and the moulded line of the bottom shell plating as indicated in Figure 3.

For vessels designed with a permanent trim, the baseline should not be used as a reference point. The distance “h” should be measured perpendicular to the moulded line of the bottom shell plating at the relevant frames where fuel tanks are to be protected.

For vessels designed with dead rising bottom, the distance “1.5h” should be measured from the moulded line of the bottom shell plating but at right angle to the baseline, as indicated in Figure 4.
Fig. 4

D 200 Sundry

201 Lines of oil piping located at a distance from the vessel's bottom less than \(h \), as defined in 103, or from the vessel's side less than \(w \), as defined in 104 and 105 shall be fitted with valves or similar closing devices within or immediately adjacent to the tank. These valves shall be capable of being brought into operation from a readily accessible enclosed space the location of which is accessible from the navigation bridge or the propulsion machinery control position without traversing exposed freeboard or superstructure decks. The valves shall close in case of remote control system failure (fail to close) and shall be kept closed at sea at any time when the tank contains oil except when they may be opened during transfer operations.

202 Suction wells in oil tanks may protrude into the double bottom below the boundary line defined by the distance \(h \) provided that such wells are as small as practicable and the distance between the well bottom and the bottom shell is not less than 0.5\(h \).

D 300 Ship operation requirements

301 In the event of failure in the main propulsion system, alternative means of propulsion shall be available to allow the vessel to maintain manoeuvrability. This may be satisfied by vessels having EP class notation or a double drive train (engine shafting and propeller) and rudder system arrangement, or through a thruster arrangement. Any other propulsion arrangement will be subject to special consideration, ref. Sec.1. Table A1.

302 Vessels for which alternative means of propulsion is demonstrated not applicable (e.g. tankers), are not subject to 301.

Guidance note:
Vessels fulfilling the requirements specified for the class notation RP and EP, see Ch.2, satisfy this requirements.

---e-n-d---o-f---G-u-i-d-a-n-c-e---n-o-t-e---

E. Other Aspects

E 100 Ship recycling

101 All vessels shall hold and maintain an Inventory of Hazardous Materials as required by the Hong Kong International Convention for the Safe and Environmentally Sound Recycling of Vessels (SR/CONF/45) and any subsequent additions or amendments hereto adopted at the relevant time. The Inventory of Hazardous Materials shall be prepared using the most recent Guidelines Resolution MEPC. 179(59).

102 Inventory of Hazardous Materials must be examined separately. Statement of Compliance with SR/CONF/45 shall be submitted.

103 Vessels which hold class notation RECYCLABLE (Ch.27) fulfil the requirements of E100.

104 The vessel shall be subject to an initial survey before a Statement of compliance according to the convention is issued.

E 200 Environmental responsibilities

201 Requirements to a responsible Environmental Officer as defined in Sec.2 D200 shall be complied with.
SECTION 4
ELECTRICAL SHORE CONNECTIONS

A. General

A 100 Introduction

101 This document is related to the design, installation, operation and verification of electrical shore connections intended for regular use in harbour for all types of vessels. Typical design intention is vessels following regular routes with frequent visits to the same ports, with port calls lasting more than 4 hours.

102 All electrical installations shall follow the requirements to electrical installations with respect to electrical safety (i.e. human safety and fire hazards), as given in Pt.4 Ch.8. This guidance addresses additional technical details that need to be considered.

A 200 Availability

201 Availability of the shore power supply depends on the utility systems onshore. In addition, discriminative protection in the vessel’s electrical distribution may not be functional while powered by a shore connection. Hence, use of shore power supply during loading and unloading operations in port must be evaluated with respect to criticality of electric power supply. This guidance does not consider any critical cargo operations, and assumes that the vessel will stay safe if a power interruption occurs.

A 300 Voltage and frequency

301 When a vessel is powered by shore power supply, the system voltage and frequency of the vessel must match the system voltage and frequency of the shore utility supply.

A 400 Short circuit power from shore

401 A vessel’s electrical distribution system is designed for a maximum short circuit current with respect to mechanical strength and circuit breaker rating. The system’s discriminative properties (i.e. that the circuit breaker closest to a short circuit will trip, leaving the healthy part of the vessels electrical distribution system operational) depends on maximum and minimum values of the prospective short circuit current of the electric generation and distribution system onboard. In order to maintain discriminative protection in the vessel’s distribution system, the shore power supply must have a short circuit capacity within the max and min values of the vessel’s network. Typically when frequency converter is used, it is difficult or impossible to get high enough short circuit level. Therefore it is not required to have discrimination in order to fulfil these requirements.

A 500 Adoption / Adaptation

501 A shore power connection is not safe to use unless verification has been done assessing the interface between the specific vessel and the specific port with respect to voltage, frequency, short circuit power, and control system interface. Each vessel shall be designed and verified for each port where it will use the electrical shore connection.

A 600 Certification / Verification

601 A vessel’s stay in port is not covered by class requirements to availability. The vessel is deemed safe as long as it is moored. Shore power supply system is therefore only considered by class on basis of its basic electrical safety, and operational features are not considered.

602 Component certification of electrical components necessary for the shore connection is generally not requested. An exception is the shore connection cable which shall be delivered with NV product certificate or be Type Approved. Verification is performed by document review and site survey.

B. System requirements

B 100 Criticality

101 When the power supply depends on the shore utility system, the vessel’s operator must evaluate the consequence of loss of power during port stay. E.g. loss of power (blackout) can occur, hence critical operations must be considered before started.

B 200 System Earthing

201 The vessel’s designed system earthing is to be maintained also in shore connection operation. The
selected design solution must be described in the documentation of the system. Additionally, regardless of chosen solution, there must be installed a protection that disconnects the shore power supply, both the shore side circuit breaker and the main switchboard feeder breaker, whenever an earth fault current flows in the protective earthing wire of the shore power cable.

202 There shall also be a monitoring system ensuring proper connection between shore ground and hull.

B 300 Main switchboard, shore connection incoming feeder

301 The main switchboard’s incoming feeder shall have an under-voltage trip, disconnecting the shore power supply in case of loss of power on the incoming feeder.

B 400 Stand by generator

401 While the shore connection is supplying power to the vessel, at least one of the vessel’s generators shall be in stand by. I.e. this generator shall be automatically started and connected to the main switchboards in case of blackout (loss of power supply from shore).

B 500 Transfer of power

501 In order to transfer power between the vessel’s supply and shore, means for synchronization shall be arranged in the main switchboards.

B 600 Shore connection box

601 A separate shore connection box is not required if the main switchboards breaker has overcurrent protection. The short circuit protection of the cable between the shore supply circuit breaker and the main switchboard’s shore power incoming feeder shall be performed by the short circuit protection on the shore side supply system.

B 700 Control system

701 A control system shall be arranged onboard the vessel for the shore connection system. This system shall trip both shore side breaker and main switchboard incoming feeder in case of:
 — high mechanical tension of the shore connection cable
 — earth fault
 — short circuit / overcurrent
 — shore side under voltage
 — cable break
 — failure of protecting earthing connection.

702 There shall be an interlock preventing closing of shore circuit breaker unless shore connection is connected and earthing switch opened.

B 800 Emergency disconnection

801 An independent system for emergency disconnection shall be arranged with emergency stop push buttons at the cable entry at vessels side and in the engine control room.

B 900 Power transformers on board

901 If a power transformer is installed onboard for adaptation of the shore connection system voltage and the main switchboard voltage, the transformer shall include overvoltage protection, protecting the vessel against lightning impulse over voltages.

902 Overvoltage protection shall be arranged for lower-voltage systems supplied through transformers from high-voltage systems.

Guidance note:
Direct earthing of the lower voltage system, or the use of voltage limitation devices, are considered adequate protection. Alternatively, an earthed screen between the primary and secondary windings may be used. See Pt.4 Ch.8 Sec.3 D400 regarding current and voltage transformers.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

B 1000 Instrumentation

1001 Shore connection shall be equipped with the following instrumentation:
 — a phase sequence indicator
 — a voltmeter and
 — a Ampere meter.
B 1100 Earthing switch

Upon opening of the shore side circuit breaker an earth switch shall automatically connect all phases of the cable to earth, to discharge the cable and ensure connection to earth. It shall not be possible to open the earth switch unless the shore connection is connected and protective earth connection between the vessel and shore is verified.

C. Installation requirements

C 100 Marking

101 All high voltage equipment shall be marked with high voltage warning sign

D. Cable

D 100 General

101 All cables shall be DNV type approved or case by case approved.

E. Port requirements

E 100 Isolating transformer

101 The shore supply power shall be delivered by a transformer giving galvanic separation from the shore earthing system. Further primary /secondary windings shall be separated for lightning protection.

102 Overvoltage protection shall be arranged for lower-voltage systems supplied through transformers from high-voltage systems.

Guidance note:

Direct earthing of the lower voltage system, or the use of voltage limitation devices, are considered as adequate protection. Alternatively, an earthed screen between the primary and secondary windings may be used. See Pt.4 Ch.8 Sec.3 D400 regarding current and voltage transformers.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

F. Cable and cable management

F 100 General

101 Shore connection cable can be arranged either onboard the vessel or situated at key. In both situations a cable handling system must be arranged.

F 200 Cable handling

201 There shall be installed equipment enabling efficient cable handling and connection. The arrangement shall be designed in such a way that the number of persons involved is kept to a minimum and connection is as easy as possible. The equipment shall ensure mechanical tension control of the cable and provide interlock to the cable control system.

F 300 Plugs

301 The shore connection cable shall be connected by plug connection. Plugs shall be designed in such a way that incorrect connection is not possible. Further connection with power on should not be possible.

G. Certificate of compliance

G 100 General

101 Each vessel shall be designed and verified towards each port where it will use the electrical shore connection, and this shall be included in the certificate.