Section 9 is under revision w.r.t. axial capacity, see page 3 for details.
FOREWORD

DET NORSKE VERITAS (DNV) is an autonomous and independent foundation with the objectives of safeguarding life, property and the environment, at sea and onshore. DNV undertakes classification, certification, and other verification and consultancy services relating to quality of ships, offshore units and installations, and onshore industries worldwide, and carries out research in relation to these functions.

DNV service documents consist of amongst other the following types of documents:

— Service Specifications. Procedural requirements.
— Standards. Technical requirements.

The Standards and Recommended Practices are offered within the following areas:

A) Qualification, Quality and Safety Methodology
B) Materials Technology
C) Structures
D) Systems
E) Special Facilities
F) Pipelines and Risers
G) Asset Operation
H) Marine Operations
J) Cleaner Energy
O) Subsea Systems
ACKNOWLEDGMENTS

This Offshore Standard makes use of eight figures and one table provided by Mærsk Olie og Gas AS. The eight figures consist of Figures 11 and 12 in Section 7, Figure 1 in Appendix A, Figure 1 in Appendix C and Figures 1 through 4 in Appendix D. The table consists of Table A1 in Appendix C. Mærsk Olie og Gas AS is gratefully acknowledged for granting DNV permission to use this material.

The standard also makes use of one figure provided by Prof. S.K. Chakrabarti. The figure appears as Figure 7 in Sec. 3. Prof. Chakrabarti is gratefully acknowledged for granting DNV permission to use this figure.

CHANGES

• General
As of October 2010 all DNV service documents are primarily published electronically.

In order to ensure a practical transition from the “print” scheme to the “electronic” scheme, all documents having incorporated amendments and corrections more recent than the date of the latest printed issue, have been given the date October 2010.

An overview of DNV service documents, their update status and historical “amendments and corrections” may be found through http://www.dnv.com/resources/rules_standards/.

• Main changes
Since the previous edition (October 2007), this document has been amended, most recently in November 2009. All changes have been incorporated and a new date (October 2010) has been given as explained under “General”.

Note: Section 9 is under revision w.r.t. axial capacity Rev.1
DNV has identified that the established industry practice for calculating the axial load capacity of grouted connections does not fully represent their physical behaviour. In some cases this may result in an overestimation of calculated axial capacity of grouted connections.

DNV has together with the industry initiated work to achieve a better understanding of long term behaviour of grouted connections and to establish a reliable method for estimation of axial load capacity which can be used for offshore wind turbine structures. The new learning from this work will be documented in a guideline, and applied as basis for revising “Offshore Standard DNV-OS-J101 Design of Offshore Wind Turbine Structures”.

Until this work is completed and a revision of DNV-OS-J101 has been issued, Section 9 “Design and Construction of Grouted Connections” in DNV-OS-J101 needs to be used with the above in mind. Until the new revised standard is in place, the capacity of grouted connections in offshore wind turbines will be assessed on a case-by-case basis for certification purposes.

• Sec.9 Design and Construction of Grouted Connections
— A new guidance note is inserted under item A101.
Contents

Sec. 1 Introduction................................................................. 9
A. General.......................................................................... 9
A 100 General ................................................................. 9
A 200 Objectives .............................................................. 9
A 300 Scope and application ........................................... 9
A 400 Non-DNV codes ................................................... 9
B. Normative References................................................ 10
B 100 General ................................................................. 10
C. Informative References............................................... 10
C 100 General ................................................................. 10
D. Definitions ................................................................. 11
D 100 Verbal forms .......................................................... 11
D 200 Terms ................................................................. 11
E. Abbreviations and Symbols........................................ 13
E 100 Abbreviations ........................................................ 13
E 200 Symbols .............................................................. 14
F. Support Structure Concepts ......................................... 15
F 100 Introduction .......................................................... 15
F 200 Gravity-based structures and gravity-pile structures 16
F 300 Jacket-monopile hybrids and tripods ...................... 16
F 400 Monopiles ............................................................. 16
F 500 Supported monopiles and guyed towers ................. 16
F 600 Tripods with buckets ............................................. 16
F 700 Suction buckets ..................................................... 16
F 800 Lattice towers ....................................................... 16
F 900 Low-roll floaters ................................................... 17
F 1000 Tension leg platforms ........................................ 17
Sec. 2 Design Principles............................................. 18
A. Introduction .............................................................. 18
A 100 General ................................................................. 18
A 200 Aim of the design ................................................. 18
B. General Design Conditions ......................................... 18
B 100 General ................................................................. 18
C. Safety Classes and Target Safety Level ......................... 18
C 100 Safety classes ........................................................ 18
C 200 Target safety ........................................................ 18
D. Limit States .................................................................. 19
D 100 General ................................................................. 19
E. Design by the Partial Safety Factor Method ................. 19
E 100 General ................................................................. 19
E 200 The partial safety factor format ............................. 19
E 300 Characteristic load effect ....................................... 21
E 400 Characteristic resistance ....................................... 21
E 500 Load and resistance factors .................................... 21
F. Design by Direct Simulation of Combined Load Effect of
   Simultaneous Load Processes ....................................... 21
F 100 General ................................................................. 21
F 200 Design format ........................................................ 21
F 300 Characteristic load effect ....................................... 21
F 400 Characteristic resistance ....................................... 22
G. Design Assisted by Testing ........................................ 22
G 100 General ................................................................. 22
G 200 Full-scale testing and observation of performance of
   existing structures ....................................................... 22
H. Probability-based Design ............................................ 22
H 100 Definition ............................................................. 22
H 200 General ................................................................. 22
Sec. 3 Site Conditions .................................................. 23
A. General ................................................................. 23
A 100 Definition ............................................................. 23
B. Wind Climate ............................................................ 23
B 100 Wind conditions .................................................. 23
B 200 Parameters for normal wind conditions ............... 23
B 300 Wind data ............................................................ 23
B 400 Wind modelling .................................................... 24
B 500 Reference wind conditions and reference wind speeds 26
C. Wave Climate ........................................................... 29
C 100 Wave parameters ................................................ 29
C 200 Wave data ........................................................... 29
C 300 Wave modelling ................................................... 30
C 400 Reference sea states and reference wave heights .... 32
C 500 Wave theories and wave kinematics ..................... 33
C 600 Breaking waves .................................................... 35
D. Current ...................................................................... 35
D 100 Current parameters .............................................. 35
D 200 Current data ........................................................ 35
D 300 Current modelling ............................................... 35
E. Water Level .............................................................. 36
E 100 Water level parameters ........................................ 36
E 200 Water level data .................................................... 36
E 300 Water level modelling ......................................... 36
F. Ice ............................................................................ 36
F 100 Sea ice ................................................................. 36
F 200 Snow and ice accumulation .................................. 36
F 300 Ice modelling ........................................................ 36
G. Soil Investigations and Geotechnical Data ................... 37
G 100 Soil investigations ................................................. 37
H. Other Site Conditions ................................................ 38
H 100 Seismicity ............................................................ 38
H 200 Salinity ................................................................. 38
H 300 Temperature ........................................................ 38
H 400 Marine growth .................................................... 38
H 500 Air density ............................................................ 38
H 600 Ship traffic ........................................................... 38
H 700 Disposed matters ................................................ 39
H 800 Pipelines and cables .......................................... 39
Sec. 4 Loads and Load Effects .................................... 40
A. Introduction .............................................................. 40
A 100 General ................................................................. 40
B. Basis for Selection of Characteristic Loads .............. 40
B 100 General ................................................................. 40
C. Permanent Loads (G) ............................................... 40
C 100 General ................................................................. 40
D. Variable Functional Loads (Q) ................................... 40
D 100 General ................................................................. 40
D 200 Variable functional loads on platform areas ......... 41
D 300 Ship impacts and collisions ................................ 41
D 400 Tank pressures ..................................................... 41
D 500 Miscellaneous loads ........................................... 42
E. Environmental Loads (E) ........................................... 42
E 100 General ................................................................. 42
E 200 Wind turbine loads .............................................. 42
E 300 Determination of characteristic hydrodynamic loads 48
E 400 Wave loads .......................................................... 48
E 500 Ice loads ............................................................... 52
E 600 Water level loads .................................................. 54
E 700 Earthquake loads ................................................ 54
E 800 Marine growth ..................................................... 55
E 900 Scour ................................................................. 55
E 1000 Transportation loads and installation loads ....... 55
F. Combination of Environmental Loads ...................... 55
F 100 General ................................................................. 55
F 200 Environmental states .......................................... 56
F 300 Environmental contours ..................................... 56
Sec. 5 Load and Resistance Factors ......... 62
A. Load Factors ................................................................. 62
   A 100 General ................................................................. 62
   A 200 Load factor for the ULS ........................................... 62
   A 300 Load factor for the FLS ........................................... 62
B. Resistance Factors ......................................................... 62
   B 100 General ................................................................. 62
   B 200 Material requirements ............................................ 66
   B 300 Concrete ............................................................... 67
   B 400 Grout and mortar .................................................. 67
   B 500 Reinforcement steel .............................................. 67
   B 600 Prestressing steel .................................................. 67
C. Grout Materials and Material Testing ......................... 67
   C 100 General ................................................................. 67
   C 200 Experimental verification ..................................... 68
Sec. 6 Materials ................................................................. 63
A. Selection of Steel Materials and Inspection Principles ...... 63
   A 100 General ................................................................. 63
   A 200 Design temperatures ............................................. 63
   A 300 Structural category ............................................... 63
   A 400 Structural steel ..................................................... 64
B. Selection of Concrete Materials .................................... 66
   B 100 General ................................................................. 66
   B 200 Material requirements ............................................ 66
   B 300 Concrete ............................................................... 67
   B 400 Grout and mortar .................................................. 67
   B 500 Reinforcement steel .............................................. 67
   B 600 Prestressing steel .................................................. 67
C. Grout Materials and Material Testing ......................... 67
   C 100 General ................................................................. 67
   C 200 Experimental verification ..................................... 68
Sec. 7 Design of Steel Structures .................................. 69
A. Ultimate Limit States – General .................................. 69
   A 100 General ................................................................. 69
   A 200 Structural analysis ............................................... 69
   A 300 Ductility ............................................................... 69
   A 400 Yield check ........................................................... 69
   A 500 Buckling check ..................................................... 69
B. Ultimate Limit States – Shell Structures ....................... 69
   B 100 General ................................................................. 69
C. Ultimate Limit States – Tubular Members, Tubular Joints and Conical Transitions ........................................... 70
   C 100 General ................................................................. 70
D. Ultimate Limit States – Non-Tubular Beams, Columns and Frames ........................................................... 70
   D 100 General ................................................................. 70
E. Ultimate Limit States – Special Provisions for Plating and Stiffeners .......................................................... 70
   E 100 Scope....................................................................... 70
   E 200 Minimum thickness .............................................. 70
   E 300 Bending of plating ............................................... 70
   E 400 Stiffeners ................................................................ 71
F. Ultimate Limit States – Special Provisions for Girders and Girder Systems ................................................... 71
   F 100 Scope....................................................................... 71
Sec. 8 Detailed Design of Offshore Concrete Structures .... 84
A. General ........................................................................ 84
   A 100 Introduction .......................................................... 84
   A 200 Material ............................................................... 84
   A 300 Composite structures .......................................... 84
B. Design Principles .......................................................... 84
   B 100 Design material strength ...................................... 84
C. Basis for Design by Calculation ................................... 85
   C 100 Concrete grades and in-situ strength of concrete ...... 85
D. Bending Moment and Axial Force (ULS) ......................... 85
   D 100 General ................................................................. 85
E. Fatigue Limit State ........................................................ 85
   E 100 General ................................................................. 85
F. Accidental Limit State ..................................................... 85
   F 100 General ................................................................. 85
G. Serviceability Limit State ............................................. 85
   G 100 Durability ............................................................. 85
   G 200 Crack width calculation ........................................ 85
   G 300 Other serviceability limit states ............................ 86
H. Detailing of Reinforcement ........................................... 86
   H 100 Positioning ............................................................ 86
   H 200 Electrical earthing ............................................... 86
   H 300 Corrosion control .................................................. 86
   H 400 Design fatigue factors .......................................... 86
   H 500 Design cumulative damage .................................. 86
   H 600 Material factors for fatigue .................................. 86
   H 700 Design requirement .............................................. 86
   H 800 Improved fatigue performance of welded structures by grinding ...................................................... 86
Sec. 9 Design and Construction of Grouted Connections .... 87
A. General ........................................................................ 87
   A 100 Introduction .......................................................... 87
   A 200 Design principles .................................................. 87
B. Ultimate Limit States ..................................................... 88
   B 100 Connections subjected to axial load and torque ...... 88
   B 200 Connections subjected to bending moment and shear loading ....................................................... 89

Contents – Page 7

Offshore Standard DNV-OS-J101, October 2010

Sec. 10 Foundation Design ........................................ 93

A. General................................................................. 93
A 100 Introduction..................................................... 93
A 200 Soil investigations ........................................... 93
A 300 Characteristic properties of soil ......................... 93
A 400 Effects of cyclic loading.................................. 94
A 500 Soil-structure interaction................................. 94
B. Stability of Seabed.................................................... 94
B 100 Slope stability ..................................................... 94
B 200 Hydraulic stability ............................................ 94
B 300 Scour and scour prevention............................. 94
C. Pile Foundations....................................................... 95
C 100 General ............................................................ 95
C 200 Design criteria for monopile foundations ............ 95
C 300 Design criteria for jacket pile foundations .......... 96
C 400 Design of piles subject to scour....................... 97
D. Gravity Base Foundations ....................................... 97
D 100 General ........................................................... 97
D 200 Stability of foundations ..................................... 97
D 300 Settlements and displacements ......................... 98
D 400 Soil reactions on foundation structure ................. 98
D 500 Soil modelling for dynamic analysis .................. 98
D 600 Filling of voids .................................................. 98

Sec. 11 Corrosion Protection .................................... 101

A. General................................................................. 101
A 100 General............................................................ 101
B. Acceptable Corrosion Protection............................ 101
B 100 Atmospheric zone ............................................ 101
B 200 Splash zone ...................................................... 101
B 300 Submerged zone .............................................. 101
B 400 Closed compartments ...................................... 102
C. Cathodic Protection ................................................ 102
C 100 General ........................................................... 102
D. Coating ................................................................. 102
D 100 General ........................................................... 102

Sec. 12 Transport and Installation ............................ 103

A. Marine Operations ................................................ 103
A 100 Warranty surveys ........................................... 103
A 200 Planning of operations .................................... 103
A 300 Design loads .................................................... 104
A 400 Structural design .............................................. 104
A 500 Load transfer operations .................................. 104
A 600 Towing ............................................................. 104
A 700 Offshore installation ........................................ 104
A 800 Lifting .............................................................. 104
A 900 Subsea operations .......................................... 104

Sec. 13 In-Service Inspection, Maintenance and Monitoring ............................ 105

A. General ................................................................. 105
A 100 General ........................................................... 105
B. Periodical Inspections ......................................... 105
B 100 General ........................................................... 105

B 200 Preparation for periodical inspections ............... 105
B 300 Interval between inspections ......................... 105
B 400 Inspection results .......................................... 105
B 500 Reporting ........................................................ 105
C. Periodical Inspection of Wind Turbines .................... 105
C 100 Interval between inspections ......................... 105
C 200 Scope for inspection ........................................ 105
D. Periodical Inspection of Structural and Electrical Systems above Water .................................. 106
D 100 Interval between inspections ......................... 106
D 200 Scope for inspection ........................................ 106
E. Periodical Inspection of Structures Below Water ........ 106
E 100 Interval between inspections ......................... 106
E 200 Scope for inspection ........................................ 106
G. Deviations .............................................................. 107
G 100 General ........................................................... 107

App. A Stress Concentration Factors for Tubular Joints .................................. 108

A. Calculation of Stress Concentration Factors ............ 108
A 100 General ........................................................... 108

App. B Local Joint Flexibilities for Tubular Joints ... 115

A. Calculation of Local Joint Flexibilities .................... 115
A 100 General ........................................................... 115

App. C Stress Concentration Factors for Girth Welds .................................. 117

A. Calculation of Stress Concentration Factors for Hot Spots 117
A 100 General ........................................................... 117

App. D Stress Extrapolation for Welds .......................... 118

A. Stress Extrapolation to Determine Hot Spot Stresses 118
A 100 General ........................................................... 118

App. E Tubular Connections – Fracture Mechanics Analyses and Calculations .................................. 120

A. Stress Concentrations at Tubular Joints ................. 120
A 100 General ........................................................... 120
B. Stresses at Tubular Joints ....................................... 120
B 100 General ........................................................... 120
C. Stress Intensity Factor ............................................ 121
C 100 General ........................................................... 121
C 200 Correction factor for membrane stress component 121
C 300 Correction factor for bending stress component .... 122
C 400 Crack shape and initial crack size .................... 122
C 500 Load Shedding ................................................ 122
C 600 Crack Growth .................................................. 123

App. F Pile Resistance and Load-displacement Relationships .................................. 124

A. Axial Pile Resistance ............................................. 124
A 100 General ........................................................... 124
A 200 Clay ................................................................. 124
A 300 Sand ................................................................. 124
A 400 t-z curves ......................................................... 125
B. Laterally Loaded Piles ......................................... 125
B 100 General ........................................................... 125
B 200 Clay ................................................................. 126
B 300 Sand ................................................................. 126
B 400 Application of p-y curves ................................. 127
SECTION 1
INTRODUCTION

A. General

A 100 General

101 This offshore standard provides principles, technical requirements and guidance for design, construction and in-service inspection of offshore wind turbine structures.

102 DNV-OS-J101 is the DNV standard for design of offshore wind turbine structures. The standard covers design, construction, installation and inspection of offshore wind turbine structures. The design principles and overall requirements are defined in this standard. The standard can be used as a stand-alone document.

103 The standard shall be used for design of support structures and foundations for offshore wind turbines. The standard shall also be used for design of support structures and foundations for other structures in an offshore wind farm, such as meteorological masts.

The standard does not cover design of support structures and foundations for transformer stations for wind farms. For design of support structures and foundations for transformer stations DNV-OS-C101 applies.

Guidance note:

DNV-OS-C101 offers the choice of designing unmanned structures with a lower requirement to the load factor than that which applies to manned structures, hence reflecting the difference in consequence of failure between unmanned and manned structures. Transformer stations are usually unmanned, but the economical consequences of a failure may be very large. When support structures and foundations for transformer stations are designed according to DNV-OS-C101, it should therefore be considered whether it will be necessary from an economical point of view to carry out the design based on the load factor requirement for manned structures, even if the transformer stations are unmanned.

---end-of-Guidance-note---

104 The standard does not cover design of wind turbine components such as nacelle, rotor, generator and gear box. For structural design of rotor blades DNV-OS-J102 applies. For structural design of wind turbine components for which no DNV standard exists, the IEC61400-1 standard applies.

105 The tower, which usually extends from somewhere above the water level to just below the nacelle, is considered a part of the support structure. The structural design of the tower is therefore covered by this standard, regardless of whether a type approval of the tower exists and is to be applied.

Guidance note:

For a type-approved tower, the stiffnesses of the tower form part of the basis for the approval. It is important to make sure not to change the weight and stiffness distributions over the height of the tower relative to those assumed for the type approval.

---end-of-Guidance-note---

106 The standard has been written for general world-wide application. National and governmental regulations may include requirements in excess of the provisions given by this standard depending on the size, type, location and intended service of the wind turbine structure.

Guidance note:

An attempt has been made to harmonise DNV-OS-J101 with the coming IEC61400-3 standard, in particular with respect to the specification of load cases. For further information, reference is made to the Committee Draft of IEC61400-3.

---end-of-Guidance-note---

107 DNV-OS-J101 is applied as part of the basis for carrying out a DNV project certification of an offshore wind farm.

A 200 Objectives

201 The standard specifies general principles and guidelines for the structural design of offshore wind turbine structures.

202 The objectives of this standard are to:

— provide an internationally acceptable level of safety by defining minimum requirements for structures and structural components (in combination with referenced standards, recommended practices, guidelines, etc.)
— serve as a contractual reference document between suppliers and purchasers related to design, construction, installation and in-service inspection
— serve as a guideline for designers, suppliers, purchasers and regulators
— specify procedures and requirements for offshore structures subject to DNV certification
— serve as a basis for verification of offshore wind turbine structures for which DNV is contracted to perform the verification.

A 300 Scope and application

301 The standard is applicable to all types of support structures and foundations for offshore wind turbines.

302 The standard is applicable to the design of complete structures, including substructures and foundations, but excluding wind turbine components such as nacelles and rotors.

303 This standard gives requirements for the following:

— design principles
— selection of material and extent of inspection
— design loads
— load effect analyses
— load combinations
— structural design
— foundation design
— corrosion protection.

A 400 Non-DNV codes

401 In case of conflict between the requirements of this standard and a reference document other than DNV documents, the requirements of this standard shall prevail.

402 The provision for using non-DNV codes or standards is that the same safety level as the one resulting for designs according to this standard is obtained.

403 Where reference in this standard is made to codes other than DNV documents, the valid revision of these codes shall be taken as the revision which was current at the date of issue of this standard, unless otherwise noted.

404 When code checks are performed according to other codes than DNV codes, the resistance and material factors as given in the respective codes shall be used.

405 National and governmental regulations may override the requirements of this standard as applicable.
B. Normative References

B 100  General

101 The standards in Table B1 include provisions, which through reference in this text constitute provisions of this standard.

<table>
<thead>
<tr>
<th>Table B1 DNV Offshore Standards, Rules and Standards for Certification</th>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNV-OS-B101</td>
<td>Metallic Materials</td>
<td></td>
</tr>
<tr>
<td>DNV-OS-C101</td>
<td>Design of Offshore Steel Structures, General (LRFD Method)</td>
<td></td>
</tr>
<tr>
<td>DNV-OS-C201</td>
<td>Structural Design of Offshore Units (WSD method)</td>
<td></td>
</tr>
<tr>
<td>DNV-OS-C401</td>
<td>Fabrication and Testing of Offshore Structures</td>
<td></td>
</tr>
<tr>
<td>DNV-OS-C502</td>
<td>Offshore Concrete Structures</td>
<td></td>
</tr>
<tr>
<td>DNV-OS-J102</td>
<td>Design and Manufacture of Wind Turbine Blades</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rules for Planning and Execution of Marine Operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rules for Fixed Offshore Installations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rules for Classification of Ships</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DNV Standard for Certification No. 2.22 Lifting Appliances</td>
<td></td>
</tr>
</tbody>
</table>

C. Informative References

C 100  General

101 The documents in Tables C1, C2 and C3 include acceptable methods for fulfilling the requirements in the standards. See also current DNV List of Publications. Other recognised codes or standards may be applied provided it is shown that they meet or exceed the level of safety of the actual standard.

<table>
<thead>
<tr>
<th>Table C1 DNV Offshore Standards for structural design</th>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNV-OS-C501</td>
<td>Composite Components</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table C2 DNV Recommended Practices and Classification Notes</th>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNV/Risø</td>
<td>Guidelines for Design of Wind Turbines</td>
<td></td>
</tr>
<tr>
<td>DNV-RP-B401</td>
<td>Cathodic Protection Design</td>
<td></td>
</tr>
<tr>
<td>DNV-RP-C201</td>
<td>Buckling Strength of Plated Structures</td>
<td></td>
</tr>
<tr>
<td>DNV-RP-C202</td>
<td>Buckling Strength of Shells</td>
<td></td>
</tr>
<tr>
<td>DNV-RP-C203</td>
<td>Fatigue Strength Analysis of Offshore Steel Structures</td>
<td></td>
</tr>
<tr>
<td>DNV-RP-C205</td>
<td>Environmental Conditions and Environmental Loads</td>
<td></td>
</tr>
<tr>
<td>DNV-RP-C207</td>
<td>Statistical Representation of Soil Data</td>
<td></td>
</tr>
<tr>
<td>Classification Notes 30.1</td>
<td>Buckling Strength Analysis</td>
<td></td>
</tr>
<tr>
<td>Classification Notes 30.4</td>
<td>Foundations</td>
<td></td>
</tr>
<tr>
<td>Classification Notes 30.6</td>
<td>Structural Reliability Analysis of Marine Structures</td>
<td></td>
</tr>
<tr>
<td>Classification Notes 30.7</td>
<td>Fatigue Assessments of Ship Structures</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table C3 Other references</th>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISC</td>
<td>LRFD Manual of Steel Construction</td>
<td></td>
</tr>
<tr>
<td>API RP 2A LRFD</td>
<td>Planning, Designing, and Constructing Fixed Offshore Platforms – Load and Resistance Factor Design</td>
<td></td>
</tr>
<tr>
<td>API RP 2N</td>
<td>Recommended Practice for Planning, Designing, and Constructing Structures and Pipelines for Arctic Conditions</td>
<td></td>
</tr>
<tr>
<td>BS 7910</td>
<td>Guide on methods for assessing the acceptability of flaws in fusion welded structures</td>
<td></td>
</tr>
<tr>
<td>DIN 4020</td>
<td>Geotechnische Untersuchungen für bautechnische Zwecke</td>
<td></td>
</tr>
<tr>
<td>DIN 4021</td>
<td>Baugrund; Aufschluss durch Schürfte und Bohrungen sowie Entnahme von Proben</td>
<td></td>
</tr>
<tr>
<td>DIN 4131</td>
<td>Stählerne Antennenträgerweke</td>
<td></td>
</tr>
<tr>
<td>DIN 4133</td>
<td>Schornsteine aus Stahl</td>
<td></td>
</tr>
<tr>
<td>EN10025-1</td>
<td>Hot rolled products of non-alloy structural steels</td>
<td></td>
</tr>
<tr>
<td>EN10025-2</td>
<td>Hot rolled products of structural steels. Technical delivery conditions for non-alloy structural steels</td>
<td></td>
</tr>
<tr>
<td>EN10025-3</td>
<td>Hot rolled products of structural steels. Technical delivery conditions for normalized/normalized rolled weldable fine grain structural steels</td>
<td></td>
</tr>
<tr>
<td>EN 10240</td>
<td>Metallic products – types of inspection documents</td>
<td></td>
</tr>
<tr>
<td>EN10225</td>
<td>Weldable structural steels for fixed offshore structures – technical delivery conditions</td>
<td></td>
</tr>
<tr>
<td>EN 13670-1</td>
<td>Execution of Concrete Structures – Part 1: Common rules</td>
<td></td>
</tr>
<tr>
<td>EN 1993-1-1</td>
<td>Eurocode 3: Design of Steel Structures, Part 1-1: General Rules and Rules for Buildings</td>
<td></td>
</tr>
<tr>
<td>ENV 1993-1-6</td>
<td>Eurocode 3: Design of Steel Structures, Part 1-6: General Rules – Supplementary Rules for the Shell Structures</td>
<td></td>
</tr>
<tr>
<td>EN 1090-1</td>
<td>Execution of steel structures – Part 1: General rules and rules for buildings</td>
<td></td>
</tr>
<tr>
<td>EN 1090-5</td>
<td>Execution of steel structures – Part 5: Supplementary rules for bridges</td>
<td></td>
</tr>
<tr>
<td>prEN 50308</td>
<td>Wind Turbines – Labour Safety</td>
<td></td>
</tr>
<tr>
<td>IEC 61400-1</td>
<td>Wind Turbines – Part 1: Design Requirements</td>
<td></td>
</tr>
<tr>
<td>IEC 61400-3</td>
<td>Wind Turbines – Part 3: Design requirements for offshore wind turbines, committee draft</td>
<td></td>
</tr>
<tr>
<td>ISO 6934</td>
<td>Steel for the prestressing of concrete</td>
<td></td>
</tr>
<tr>
<td>ISO 6935</td>
<td>Steel for the reinforcement of concrete</td>
<td></td>
</tr>
<tr>
<td>ISO 12944</td>
<td>Paints and varnishes – Corrosion protection of steel structures by protective paint systems</td>
<td></td>
</tr>
<tr>
<td>ISO 14688</td>
<td>Geotechnical investigations and testing – identification and classification of soil – Part 1: Identification and description</td>
<td></td>
</tr>
<tr>
<td>ISO/IEC 17020</td>
<td>General criteria for the operation of various types of bodies performing inspections</td>
<td></td>
</tr>
<tr>
<td>ISO/IEC 17025</td>
<td>General requirements for the competence of calibration and testing laboratories</td>
<td></td>
</tr>
<tr>
<td>ISO 19900:2002</td>
<td>Petroleum and natural gas industries – Offshore structures – General requirements for offshore structures</td>
<td></td>
</tr>
<tr>
<td>ISO 19901-2</td>
<td>Seismic design procedures and criteria</td>
<td></td>
</tr>
<tr>
<td>ISO 19902</td>
<td>Petroleum and Natural Gas Industries – Fixed Steel Offshore Structures</td>
<td></td>
</tr>
</tbody>
</table>
### D. Definitions

**D 100 Verbal forms**

101 **Shall**: Indicates a mandatory requirement to be followed for fulfilment or compliance with the present standard. Deviations are not permitted unless formally and rigorously justified, and accepted by all relevant contracting parties.

102 **Should**: Indicates a recommendation that a certain course of action is preferred or is particularly suitable. Alternative courses of action are allowable under the standard where agreed between contracting parties, but shall be justified and documented.

103 **May**: Indicates a permission, or an option, which is permitted as part of conformance with the standard.

104 **Can**: Requirements with can are conditional and indicate a possibility to the user of the standard.

105 **Agreement, or by agreement**: Unless otherwise indicated, agreed in writing between contractor and purchaser.

**D 200 Terms**

201 **Abnormal load**: Wind load resulting from one of a number of severe fault situations for the wind turbine, which result in activation of system protection functions. Abnormal wind loads are in general less likely to occur than loads from any of the normal wind load cases considered for the ULS.

202 **Accidental Limit States (ALS)**: Ensure that the structure resists accidental loads and maintain integrity and performance of the structure due to local damage or flooding.

203 **ALARP**: As low as reasonably practicable; notation used for risk.

204 **Atmospheric zone**: The external region exposed to atmospheric conditions.

205 **Cathodic protection**: A technique to prevent corrosion of a steel surface by making the surface to be the cathode of an electrochemical cell.

206 **Characteristic load**: The reference value of a load to be used in the determination of the design load. The characteristic load is normally based upon a defined quantile in the upper tail of the distribution function for load.

207 **Characteristic load effect**: The reference value of a load effect to be used in the determination of the design load effect. The characteristic load effect is normally based upon a defined quantile in the upper tail of the distribution function for load effect.

208 **Characteristic resistance**: The reference value of a structural strength to be used in the determination of the design resistance. The characteristic resistance is normally based upon a 5% quantile in the lower tail of the distribution function for resistance.

209 **Characteristic material strength**: The nominal value of a material strength to be used in the determination of the design strength. The characteristic material strength is normally based upon a 5% quantile in the lower tail of the distribution function for material strength.

210 **Characteristic value**: A representative value of a load variable or a resistance variable. For a load variable, it is a high but measurable value with a prescribed probability of not being unfavourably exceeded during some reference period. For a resistance variable it is a low but measurable value with a prescribed probability of being favourably exceeded.

211 **Classification Notes**: The classification notes cover proven technology and solutions which are found to represent good practice by DNV, and which represent one alternative for satisfying the requirements stipulated in the DNV Rules or other codes and standards cited by DNV. The classification notes will in the same manner be applicable for fulfilling the requirements in the DNV offshore standards.

212 **Coating**: Metallic, inorganic or organic material applied to steel surfaces for prevention of corrosion.

213 **Co-directional**: Wind and waves acting in the same direction.

214 **Contractor**: A party contractually appointed by the purchaser to fulfil all, or any of, the activities associated with fabrication and testing.

215 **Corrosion allowance**: Extra steel thickness that may rust away during design life time.

216 **Current**: A flow of water past a fixed point and usually represented by a velocity and a direction.

217 **Cut-in wind speed**: Lowest mean wind speed at hub height at which a wind turbine produces power.

218 **Cut-out wind speed**: Highest mean wind speed at hub height at which a wind turbine is designed to produce power.

219 **Design brief**: An agreed document where owners’ requirements in excess of this standard should be given.

220 **Design temperature**: The lowest daily mean temperature that the structure may be exposed to during installation and operation.

221 **Design value**: The value to be used in the deterministic design procedure, i.e. characteristic value modified by the resistance factor or the load factor, whichever is applicable.

222 **Driving voltage**: The difference between closed circuit anode potential and protection potential.

223 **Environmental state**: Short term condition of typically 10 minutes, 1 hour or 3 hours duration during which the intensities of environmental processes such as wave and wind processes can be assumed to be constant, i.e. the processes themselves are stationary.

224 **Expected loads and response history**: Expected load and response history for a specified time period, taking into account the number of load cycles and the resulting load levels and response for each cycle.

225 **Expected value**: The mean value, e.g. the mean value of a load during a specified time period.

226 **Fatigue**: Degradation of the material caused by cyclic loading.

227 **Fatigue critical**: Structure with predicted fatigue life near the design fatigue life.

228 **Fatigue Limit States (FLS)**: Related to the possibility of failure due to the cumulative damage effect of cyclic loading.

229 **Foundation**: The foundation of a support structure for a wind turbine in this document reckoned as a structural or geotechnical component, or both, extending from the seabed downwards.
Guidance note: Information in the standards in order to increase the understanding of the requirements.

Gust: Sudden and brief increase of the wind speed over its mean value.

Highest astronomical tide (HAT): Level of high tide when all harmonic components causing the tide are in phase.

Hindcast: A method using registered meteorological data to reproduce environmental parameters. Mostly used for reproduction of wave data and wave parameters.

Hub height: Height of centre of swept area of wind turbine rotor, measured from mean sea level.

Idling: Condition of a wind turbine, which is rotating slowly and not producing power.

Independent organisations: Accredited or nationally approved certification bodies.

Inspection: Activities such as measuring, examination, testing, gauging one or more characteristics of an object or service and comparing the results with specified requirements to determine conformity.

Limit State: A state beyond which the structure no longer satisfies the requirements. The following categories of limit states are of relevance for structures: ULS = ultimate limit state; FLS = fatigue limit state; ALS = accidental limit state; SLS = serviceability limit state.

Load effect: Effect of a single design load or combination of loads on the equipment or system, such as stress, strain, deformation, displacement, motion, etc.

Lowest astronomical tide (LAT): Level of low tide when all harmonic components causing the tide are in phase.

Lowest mean daily temperature: The lowest value of the annual mean daily temperature curve for the area in question. For seasonally restricted service the lowest value within the time of operation applies.

Lowest waterline: Typical light ballast waterline for ships, transit waterline or inspection waterline for other types of units.

Mean: Statistical mean over observation period.

Mean water level (MWL): Mean still water level, defined as mean level between highest astronomical tide and lowest astronomical tide.

Mean zero-upcrossing period: Average period between two consecutive zero-upcrossings of ocean waves in a sea state.

Metocean: Abbreviation of meteorological and oceanographic.

Non-destructive testing (NDT): Structural tests and inspection of welds by visual inspection, radiographic testing, ultrasonic testing, magnetic particle testing, penetrant testing and other non-destructive methods for revealing defects and irregularities.

Object Standard: The standards listed in Table C1.

Offshore Standard: The DNV offshore standards are documents which presents the principles and technical requirements for design of offshore structures. The standards are offered as DNV’s interpretation of engineering practice for general use by the offshore industry for achieving safe structures.

Offshore wind turbine structure: A structural system consisting of a support structure for an offshore wind turbine and a foundation for the support structure.

Omni-directional: Wind or waves acting in all directions.

Operating conditions: Conditions wherein a unit is on location for purposes of drilling or other similar operations, and combined environmental and operational loadings are within the appropriate design limits established for such operations. The unit may be either afloat or supported by the sea bed, as applicable.

Parking: The condition to which a wind turbine returns after a normal shutdown. Depending on the construction of the wind turbine, parking refers to the turbine being either in a stand-still or an idling condition.

Partial Safety Factor Method: Method for design where uncertainties in loads are represented by a load factor and uncertainties in strengths are represented by a material factor.

Pile head: The position along a foundation pile in level with the seabed. This definition applies regardless of whether the pile extends above the seabed.

Pile length: Length along a pile from pile head to pile tip.

Pile penetration: Vertical distance from the seabed to the pile tip.

Potential: The voltage between a submerged metal surface and a reference electrode.

Purchaser: The owner or another party acting on his behalf, who is responsible for procuring materials, components or services intended for the design, construction or modification of a structure.

Qualified welding procedure specification (WPS): A welding procedure specification, which has been qualified by conforming to one or more qualified WPQRs.

Rated power: Quantity of power assigned, generally by a manufacturer, for a specified operating condition of a component, device or equipment. For a wind turbine, the rated power is the maximum continuous electrical power output which a wind turbine is designed to achieve under normal operating conditions.

Rated wind speed: Minimum wind speed at hub height at which a wind turbine’s rated power is achieved in the case of a steady wind without turbulence.

Recommended Practice (RP): The recommended practice publications cover proven technology and solutions which have been found by DNV to represent good practice, and which represent one alternative for satisfying the requirements stipulated in the DNV offshore standards or other codes and standards cited by DNV.

Redundancy: The ability of a component or system to maintain or restore its function when a failure of a member or connection has occurred. Redundancy can be achieved for instance by strengthening or introducing alternative load paths.

Reference electrode: Electrode with stable open-circuit potential used as reference for potential measurements.

Refraction: Process by which wave energy is redistributed as a result of changes in the wave propagation velocity caused by variations in the water depth.

Reliability: The ability of a component or a system to perform its required function without failure during a specified time interval.

Residual currents: All other components of a current than tidal current.

Risk: The qualitative or quantitative likelihood of an accidental or unplanned event occurring considered in conjunction with the potential consequences of such a failure. In quantitative terms, risk is the quantified probability of a defined failure mode times its quantified consequence.

Rotor-nacelle assembly: Part of wind turbine carried by the support structure.

Scour zone: The external region of the unit which is located at the seabed and which is exposed to scour.
the load-carrying capacity, i.e., to the maximum load-carrying
2.89 of the wind turbine.
2.88 somewhere above the still water level to just below the nacelle
2.87 support structure for a wind turbine, usually extending from
2.86 installation phases.
2.85 may be a design condition, for example the mating, transit or
2.84 be subjected to the most severe environmental loadings for
2.83 which the unit is designed. Operation of the unit may have
2.82 be either afloat or supported by the sea
2.81 bed, as applicable.
2.80 support structure: The support structure for an offshore
2.79 Submerged zone: The part of the installation which is
2.78 Standstill: The condition of a wind turbine generator
2.77 Splash zone: The external region of the unit which is
2.76 most frequently exposed to wave action.
2.75 Survival condition: A condition during which a unit may
2.74 temporary condition: An operational condition that
2.73 endurance: Minimum stress level where strain
2.72 natural frequency: Frequency of vibration for
2.71 Torsion: Twisting of a body about a horizontal
2.70 Tension: A stress that draws apart or stretches or pulls
2.69 Temperature: A measure of the hotness or coldness of
2.68 Time: The duration of an event or the interval between
2.67 Thrust: Force or pressure that pushes in the direction
2.66 Stress: A measure of the inner forces within a body that
2.65 Statics: The branch of mechanics concerned with bodies
2.64 Safe: Free from danger, risk or harm.
2.63 Serviceability Limit States (SLS): Imply deformations in
2.62 Shakedown: A linear elastic structural behaviour is
2.61 Slaming: Impact load on an approximately horizontal
2.60 Specified: The material used for the installation
2.59 Specific gravity: Relative density of a substance (mean
2.58 Stress: A measure of the inner forces within a body that
2.57 Specified: The unit, as installed, whether afloat or supported
2.56 Specified: The most frequent or expected wave action
2.55 Specified: The maximum distance between the seabed and
2.54 Specified: The most severe environmental loading
2.53 Reduced cross-sectional area of the member
2.52 Repeatability: The ability to achieve the same results by
2.51 Realistic: Reasonably likely to happen. It is not an ideal or
2.50 Random: Having no determinate direction or pattern;
2.49 Residual stresses: Stresses remaining after a material has
2.48 Programming: The process of writing the computer
2.47 Predictability: The ability to predict or forecast results
2.46 Period: The time taken for one complete cycle of motion.
2.45 Nacelle: The upper portion of a wind turbine
2.44 Mating: The process of bringing together two or more
2.43 Loading: A force or stress applied to a body.
2.42 Load carrying capacity: The maximum load that a structure
2.41 Load factor: A number by which loads are multiplied
2.40 installation: All the phases involved in the construction
2.39 Instability: A system in which the change of the state of
2.38 impact: A sudden application of force or the effect of
2.37 Hardening: A process in which a material becomes
2.36 Tidal range: Distance between highest and lowest astro-
2.35 Tidal: Pertaining to the tides. Tidal forces are the
2.34 Tidal: Pertaining to the tides. Tidal forces are the
2.33 Tide: Regular and predictable movements of the sea
2.32 structure: The major portion of the wind turbine
2.31 Tower: Structural component, which forms a part of the
2.30 Synchronous: At the same rate or in harmony.
2.29 Rotor: The rotating part of a turbine or other device
2.28 Structural failure: Failure of a structure due to
2.27 Stress: A measure of the inner forces within a body that
2.26 Stiffness: The property of a structure or material that
2.25 Specified: The maximum safe height at which the wind
turbine is to be positioned.
2.24 Submerged: In or under a liquid.
2.23 Safe: Free from danger, risk or harm.
2.22 Roughness: The variation in the smoothness of a surface.
2.21 Quality: The state or degree of being good.
2.20 Quality: The state or degree of being good.
2.19 Quality: The state or degree of being good.
2.18 Quality: The state or degree of being good.
2.17 Quality: The state or degree of being good.
2.16 Quality: The state or degree of being good.
2.15 Quality: The state or degree of being good.
2.14 Quality: The state or degree of being good.
2.13 Quality: The state or degree of being good.
2.12 Quality: The state or degree of being good.
2.11 Quality: The state or degree of being good.
2.10 Quality: The state or degree of being good.
2.9 Quality: The state or degree of being good.
2.8 Quality: The state or degree of being good.
2.7 Quality: The state or degree of being good.
2.6 Quality: The state or degree of being good.
2.5 Quality: The state or degree of being good.
2.4 Quality: The state or degree of being good.
2.3 Quality: The state or degree of being good.
2.2 Quality: The state or degree of being good.
2.1 Quality: The state or degree of being good.
1.00 Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>In full</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISC</td>
<td>American Institute of Steel Construction</td>
</tr>
<tr>
<td>ALARP</td>
<td>As Low As Reasonably Practicable</td>
</tr>
<tr>
<td>ALS</td>
<td>Accidental Limit State</td>
</tr>
<tr>
<td>API</td>
<td>American Petroleum Institute</td>
</tr>
<tr>
<td>BS</td>
<td>British Standard (issued by British Standard Institute)</td>
</tr>
<tr>
<td>BSH</td>
<td>Bundesamt für Seeschifffahrt und Hydrographie</td>
</tr>
<tr>
<td>CN</td>
<td>Classification Notes</td>
</tr>
<tr>
<td>COTD</td>
<td>Crack Tip Opening Displacement</td>
</tr>
<tr>
<td>DDF</td>
<td>Deep Draught Floaters</td>
</tr>
<tr>
<td>DFF</td>
<td>Design Fatigue Factor</td>
</tr>
<tr>
<td>DNV</td>
<td>Det Norske Veritas</td>
</tr>
<tr>
<td>EHS</td>
<td>Extra High Strength</td>
</tr>
<tr>
<td>FLS</td>
<td>Fatigue Limit State</td>
</tr>
<tr>
<td>HAT</td>
<td>Highest Astronomical Tide</td>
</tr>
<tr>
<td>HISc</td>
<td>Hydrogen Induced Stress Cracking</td>
</tr>
<tr>
<td>HS</td>
<td>High Strength</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardisation</td>
</tr>
<tr>
<td>LAT</td>
<td>Lowest Astronomical Tide</td>
</tr>
<tr>
<td>MWL</td>
<td>Mean Water Level</td>
</tr>
<tr>
<td>NACE</td>
<td>National Association of Corrosion Engineers</td>
</tr>
<tr>
<td>NDT</td>
<td>Non-Destructive Testing</td>
</tr>
<tr>
<td>NS</td>
<td>Normal Strength</td>
</tr>
<tr>
<td>RP</td>
<td>Recommended Practice</td>
</tr>
<tr>
<td>RHS</td>
<td>Rectangular Hollow Section</td>
</tr>
<tr>
<td>RNA</td>
<td>Rotor-Nacelle Assembly</td>
</tr>
<tr>
<td>SCE</td>
<td>Saturated Calomel Electrode</td>
</tr>
<tr>
<td>SCF</td>
<td>Stress Concentration Factor</td>
</tr>
<tr>
<td>SLS</td>
<td>Serviceability Limit State</td>
</tr>
<tr>
<td>SMYS</td>
<td>Specified Minimum Yield Stress</td>
</tr>
<tr>
<td>SRB</td>
<td>Sulphate Reducing Bacteria</td>
</tr>
<tr>
<td>SWL</td>
<td>Still Water Level</td>
</tr>
<tr>
<td>TLP</td>
<td>Tension Leg Platform</td>
</tr>
<tr>
<td>ULS</td>
<td>Ultimate Limit State</td>
</tr>
<tr>
<td>WPS</td>
<td>Welding Procedure Specification</td>
</tr>
<tr>
<td>WSD</td>
<td>Working Stress Design</td>
</tr>
</tbody>
</table>
### E 200 Symbols

#### Latin characters

- **a₀**: connection area
- **b**: full breadth of plate flange
- **bₑ**: effective plate flange width
- **c**: detail shape factor
- **c**: wave celerity
- **d**: bolt diameter
- **d**: water depth
- **f**: frequency
- **f**: load distribution factor
- **fᵢₑ**: frequency of ice load
- **fₙ**: natural frequency of structure
- **fₚ**: strength ratio
- **fₚₑ**: nominal lowest ultimate tensile strength
- **fₚₑ**: ultimate tensile strength of bolt
- **fₚₚ**: strength ratio
- **fₚₚₑ**: specified minimum yield stress
- **g**: acceleration of gravity
- **h**: height
- **h**: water depth
- **h₀**: reference depth for wind-generated current
- **hₚₙ**: dynamic pressure head due to flow through pipes
- **hₚₙₑ**: vertical distance from the load point to the position of max filling height
- **hₜ**: threshold for wave height
- **k**: wave number
- **kₐ**: correction factor for aspect ratio of plate field
- **kₘₑ**: bending moment factor
- **kₚₚₑ**: fixation parameter for plate
- **kₚₑ**: fixation parameter for stiffeners
- **kₚₑ**: correction factor for curvature perpendicular to the stiffeners
- **kₚₑ**: hole clearance factor
- **k₁**: shear force factor
- **l**: stiffener span
- **lₜ**: distance between points of zero bending moments
- **n**: number
- **p**: pressure
- **pₑ**: design pressure
- **pₚₑ**: valve opening pressure
- **r**: root face
- **rₑ**: radius of curvature
- **rₑ**: flexural strength of ice
- **rₑ**: local ice pressure
- **rₑ**: compressive strength of ice
- **rₑ**: distance between stiffeners
- **t**: ice thickness
- **t₀**: net thickness of plate
- **tₑ**: corrosion addition
- **tₑ**: throat thickness
- **vₑ**: annual average wind speed at hub height
- **vₑ**: cut-in wind speed
- **vₑ**: cut-out wind speed
- **vₑ**: rated wind speed
- **vₑ**: tidal current at still water level
- **vₑ**: wind-driven current at still water level
- **z**: vertical distance from still water level, positive upwards
- **z₀**: terrain roughness parameter
- **A**: scale parameter in logarithmic wind speed profile
- **Aₑ**: Charnock's constant
- **Aₑ**: net area in the threaded part of a bolt
- **Aₑ**: wave amplitude
- **C**: weld factor
- **Cₑ**: drag coefficient
- **Cₑ**: mass coefficient
- **Cₑ**: slamming coefficient
- **Cₑ**: factor for effective plate flange
- **D**: deformation load
- **E**: modulus of elasticity
- **Eₑ**: environmental load
- **Eₑ**: mean value
- **F**: cumulative distribution function
- **Fₑ**: force, load
- **Fₑ**: design load
- **Fₑ**: characteristic load
- **Fₑ**: design preloading force in bolt
- **G**: permanent load
- **Hₑ**: height
- **Hₑ**: maximum wave height
- **Hₑ**: wave height in deep waters
- **Hₑ**: root mean squared wave height
- **Hₑ**: significant wave height
- **Iₑ**: turbulence intensity
- **Iₑ**: expected turbulence intensity, reference turbulence intensity
- **K**: frost index
- **Kₑ**: Keulegan-Carpenter number
- **L**: length of crack in ice
- **M**: moment
- **Mₑ**: plastic moment resistance
- **Mₑ**: elastic moment resistance
- **N**: fatigue life, i.e. number of cycles to failure
- **Nₑ**: number of supported stiffeners on the girder span
- **Nₑ**: number of stiffeners between considered section and nearest support
- **P**: load
- **Pₑ**: average design point load from stiffeners
- **Q**: variable functional load
- **Rₑ**: radius
- **Rₑ**: resistance
- **Rₑ**: design resistance
- **Rₑ**: characteristic resistance
- **S**: girder span as if simply supported
- **S**: power spectral density
- **Sₑ**: response spectral acceleration
- **Sₑ**: response spectral displacement
- **Sₑ**: response spectral velocity
- **Sₑ**: design load effect
- **Sₑ**: characteristic load effect
- **Sₑ**: lower limit of the splash zone
F. Support Structure Concepts

F 100 Introduction

101 Bottom-mounted support structures for large offshore wind farm developments fall into a number of generic types which can be categorised by their nature and configuration, their method of installation, their structural configuration and the selection of their construction materials. The options for offshore support structures basically consist of:

- piled structures
- gravity-based structures
- skirt and bucket structures
- moored floating structures.

The structural configuration of support structures can be categorised into five basic types:

- monopile structures
- tripod structures
- lattice structures
- gravity structures
- floating structures.

Hybrid support structure designs may be utilised combining the features of the categorised structures.

Water depth limits proposed for the different types of support structures in the following subsections are meant to be treated as guidance rather than limitations.

102 Monopile structures provide the benefit of simplicity in fabrication and installation. Tripod and lattice structures are usually piled. Piled foundations by far forms the most common form of offshore foundation. Piled offshore structures have been installed since the late 1940’s and have been installed in water depth in excess of 150 metres. The standard method of offshore and near-shore marine installation of piled structures is to lift or float the structure into position and then drive the piles into the seabed using either steam or hydraulic powered hammers. The handling of piles and hammers generally requires the use of a crane with sufficient capacity, ideally a floating crane vessel (revolving or shear leg crane). However, other types of offshore installation units are sometimes used such as drilling jack-ups, specially constructed installation vessels or flat top barges mounted with a land based crawler crane.

103 Gravity foundations, unlike piled foundations, are designed with the objective of avoiding tensile loads (lifting) between the bottom of the support structure and the seabed. This is achieved by providing sufficient dead loads such that the structure maintains its stability in all environmental conditions solely by means of its own gravity. Gravity structures are usually competitive when the environmental loads are relatively modest and the “natural” dead load is significant or when additional ballast can relatively easily be provided at a modest cost. The ballast can be pumped-in sand, concrete, rock
or iron ore. The additional ballast can partly be installed in the fabrica
tion yard and partly at the final position; all depending on the ca
pacity of the construction yard, the available draft during sea transport and the availability of ballast materials. The gravity based structure is especially suited where the installation of the support structure cannot be performed by a heavy lift vessel or other special offshore installation vessels, either because of non-availability or prohibitive costs of mo
biling the vessels to the site.

104 Floating structures can by their very nature be floating direc
tly in a fully commissioned condition from the fabrication and out-fitting yard to the site. Floating structures are es
cially competitive at large water depths where the depth makes the conventional bottom-supported structures non-competi
tive.

F 200 Gravity-based structures and gravity-pile struc
tures
201 The gravity type support structure is a concrete based stru
cture which can be constructed with or without small steel or concrete skirts. The ballast required to obtain sufficient gravity consists of sand, iron ore or rock that is filled into the base of the support structure. The base width can be adjusted to suit the actual soil conditions. The proposed design includes a central steel or concrete shaft for transition to the wind tur
bine tower. The structure requires a flat base and will for all loca
tions require some form for scour protection, the extent of which is to be determined during the detailed design.

202 The gravity-pile support structure is very much like the gravity support structure. The structure can be filled with iron ore or rock as required. The base width can be adjusted to suit the actual soil conditions. The structure is designed such that the variable loads are shared between gravity and pile actions.

203 These types of structures are well suited for sites with firm soils and water depth ranging from 0 to 25 metres.

F 300 Jacket-monopile hybrids and tripods
301 The jacket-monopile hybrid structure is a three-legged jacked structure in the lower section, connected to a monopile in the upper part of the water column, all made of cylindrical steel tubes. The base width and the pile penetration depth can be adjusted to suit the actual soil conditions.

302 The tripod is a standard three-leg structure made of cylindrical steel tubes. The central steel shaft of the tripod makes the transition to the wind turbine tower. The tripod can have either vertical or inclined pile sleeves. Inclined pile sleeves are used when the structure is to be installed with a jack-up drilling rig. The base width and pile penetration depth can be adjusted to suit the actual environmental and soil condi
tions.

303 These types of structures are well suited for sites with water depth ranging from 20 to 50 metres.

F 400 Monopiles
401 The monopile support structure is a simple design by which the tower is supported by the monopile, either directly or through a transition piece, which is a transitional section between the tower and the monopile. The monopile continues down into the soil. The structure is made of cylindrical steel tubes.

402 The pile penetration depth can be adjusted to suit the actual environmental and soil conditions. The monopile is advantageous in areas with movable seabed and scour. A pos
sible disadvantage is a too high flexibility in deep waters. The limiting condition of this type of support structure is the over all deflection and vibration.

403 This type of structure is well suited for sites with water depth ranging from 0 to 25 metres.

F 500 Supported monopiles and guyed towers
501 The supported monopile structure is a standard mono
pile supported by two beams piled into the soil at a distance from the monopile. The structure is made of cylindrical steel tubes. The pile penetration of the supporting piles can be adjusted to suit the actual environmental and soil conditions.

502 The guyed tower support structure is a monotor
conected to a double hinge near the seabed and allowed to move freely. The tower is supported in four directions by guy wires extending from the tower (above water level) to anchors in the seabed. The support structure installation requires use of small to relatively large offshore vessels. Anchors including mud mats are installed. Guy wires are installed and secured to float
ers. Seabed support is installed and the tower is landed. Guy wires are connected to tensioning system. Scour protection is installed as required.

503 These types of structures are well suited for sites with water depth ranging from 20 to 40 metres.

F 600 Tripods with buckets
601 The tripod with buckets is a tripod structure equipped with suction bucket anchors instead of piles as for the conven
tional tripod structure. The wind turbine support structure can be transported afloat to the site. During installation, each bucket can be emptied in a controlled manner, thus avoiding the use of heavy lift equipment. Further, the use of the suction buckets eliminates the need for pile driving of piles as required for the conventional tripod support structure.

602 The support structure shall be installed at locations, which allow for the suction anchor to penetrate the prevalent soils (sand or clay) and which are not prone to significant scour.

603 This type of structure is well suited for sites with water depth ranging from 20 to 50 metres.

F 700 Suction buckets
701 The suction bucket steel structure consists of a centre column connected to a steel bucket through flange-reinforced shear panels, which distribute the loads from the centre column to the edge of the bucket. The wind turbine tower is connected to the centre tube above mean sea level. The steel bucket consists of vertical steel skirts extending down from a horizontal base resting on the soil surface.

702 The bucket is installed by means of suction and will in the permanent case behave as a gravity foundation, relying on the weight of the soil encompassed by the steel bucket with a skirt length of approximately the same dimension as the width of the bucket.

703 The stability is ensured because there is not enough time for the bucket to be pulled from the bottom during a wave period. When the bucket is pulled from the soil during the passing of a wave, a cavity will tend to develop between the soil surface and the top of the bucket at the heel. However, the development of such a cavity depends on water to flow in and fill up the cavity and thereby allow the bucket to be pulled up, but the typical wave periods are too short to allow this to happen. The concept allows for a simple decommissioning procedure.

704 This type of structure is well suited for sites with water depth ranging from 0 to 25 metres.

F 800 Lattice towers
801 The three-legged lattice tower consists of three corner piles interconnected with bracings. At the seabed pile sleeves are mounted to the corner piles. The soil piles are driven inside the pile sleeves to the desired depth to gain adequate stabil
ity of the structure.

802 This type of structure is well suited for sites with water depth ranging from 20 to 40 metres.
F 900  Low-roll floaters

901  The low-roll floater is basically a floater kept in position by mooring chains and anchors. In addition to keeping the floater in place, the chains have the advantage that they contribute to dampen the motions of the floater. At the bottom of the hull of the floater, a stabiliser is placed to further reduce roll.

902  The installation is simple since the structure can be towed to the site and then be connected by the chains to the anchors. The anchors can be fluke anchors, drag-in plate anchors and other plate anchors, suction anchors or pile anchors, depending on the actual seabed conditions. When the anchors have been installed, the chains can be installed and tightened and hook-up cables can be installed.

903  This structure is a feasible solution in large water depths.

F 1000  Tension leg platforms

1001  The tension leg support platform is a floater submerged by means of tensioned vertical anchor legs. The base structure helps dampen the motions of the structural system. The installation is simple since the structure can be towed to the site and then be connected to the anchors. When anchors such as anchor piles have been installed and steel legs have been put in place, the hook-up cable can be installed. The platform is subsequently lowered by use of ballast tanks and/or tension systems.

1002  The entire structure can be disconnected from the tension legs and floated to shore in case of major maintenance or repair of the wind turbine.

1003  This structure is a feasible solution in large water depths.
SECTION 2
DESIGN PRINCIPLES

A. Introduction

A 100 General

101 This section describes design principles and design methods for structural design, including:
— design by partial safety factor method with linear combination of loads or load effects
— design by partial safety factor method with direct simulation of combined load effect of simultaneous load processes
— design assisted by testing
— probability-based design.

102 General design considerations regardless of design method are also given in B101.

103 This standard is based on the partial safety factor method, which is based on separate assessment of the load effect in the structure due to each applied load process. The standard allows for design by direct simulation of the combined load effect of simultaneously applied load processes, which is useful in cases where it is not feasible to carry out separate assessments of the different individual process-specific load effects.

104 As an alternative or as a supplement to analytical methods, determination of load effects or resistance may in some cases be based either on testing or on observation of structural performance of models or full-scale structures.

105 Structural reliability analysis methods for direct probability-based design are mainly considered as applicable to special case design problems, to calibrate the load and material factors to be used in the partial safety factor method, and to design for conditions where limited experience exists.

A 200 Aim of the design

201 Structures and structural elements shall be designed to:
— sustain loads liable to occur during all temporary, operating and damaged conditions if required
— ensure acceptable safety of structure during the design life of the structure
— maintain acceptable safety for personnel and environment
— have adequate durability against deterioration during the design life of the structure.

B. General Design Conditions

B 100 General

101 The design of a structural system, its components and details shall, as far as possible, satisfy the following requirements:
— resistance against relevant mechanical, physical and chemical deterioration is achieved
— fabrication and construction comply with relevant, recognised techniques and practice
— inspection, maintenance and repair are possible.

102 Structures and structural components shall possess ductile resistance unless the specified purpose requires otherwise.

103 Structural connections are, in general, to be designed with the aim to minimise stress concentrations and reduce complex stress flow patterns.

104 As far as possible, transmission of high tensile stresses through the thickness of plates during welding, block assembly and operation shall be avoided. In cases where transmission of high tensile stresses through the thickness occurs, structural material with proven through-thickness properties shall be used. Object standards may give examples where to use plates with proven through thickness properties.

105 Structural elements may be manufactured according to the requirements given in DNV-OS-C401.

C. Safety Classes and Target Safety Level

C 100 Safety classes

101 In this standard, structural safety is ensured by use of a safety class methodology. The structure to be designed is classified into a safety class based on the failure consequences. The classification is normally determined by the purpose of the structure. For each safety class, a target safety level is defined in terms of a nominal annual probability of failure.

102 For structures in offshore wind farms, three safety classes are considered. Low safety class is used for structures, whose failures imply low risk for personal injuries and pollution, low risk for economical consequences and negligible risk to human life. Normal safety class is used for structures, whose failures imply some risk for personal injuries, pollution or minor societal losses, or possibility of significant economic consequences. High safety class is used for structures, whose failures imply large possibilities for personal injuries or fatalities, for significant pollution or major societal losses, or very large economic consequences.

Guidance note:
Support structures and foundations for wind turbines, which are normally unmanned, are usually to be designed to the normal safety class. Also support structures and foundations for meteorological measuring masts are usually to be designed to the normal safety class. Note, however, that the possibility of designing these support structures and foundations to a different safety class than the normal safety class should always be considered, based on economical motivations and considerations about human safety.

For example, the design of a meteorological measuring mast for a large wind farm may need to be carried out to the high safety class, because a loss of the mast may cause a delay in the completion of the wind farm or it may imply oversizing of the turbines and support structures in the wind farm owing to the implied incomplete knowledge of the wind. The costs associated with the loss of such a mast may well exceed the costs associated with the loss of a turbine and thereby call for design to the high safety class.

Also, in order to protect the investments in a wind farm, it may be wise to design the support structures and foundations for the wind turbines to high safety class.

C 200 Target safety

201 The target safety level for structural design of support structures and foundations for wind turbines to the normal safety class according to this standard is a nominal annual
probability of failure of $10^{-4}$. This target safety is the level aimed at for structures, whose failures are ductile, and which have some reserve capacity.

**Guidance note:**
The target safety level of $10^{-4}$ represents DNV’s interpretation of the safety level inherent in the normal safety class for wind turbines defined in IEC61400-1.
The target safety level of $10^{-4}$ is compatible with the safety level implied by DNV-OS-C101 for unmanned structures.
This reflects that wind turbines and wind turbine structures designed to normal safety class according to this standard are unmanned structures. For wind turbines where personnel are planned to be present during severe loading conditions, design to high safety class with a nominal annual probability of failure of $10^{-5}$ is warranted.

Structural components and details should be shaped such that the structure as far as possible will behave in the presumed ductile manner. Connections should be designed with smooth transitions and proper alignment of elements. Stress concentrations should be avoided as far as possible. A structure or a structural component may behave as brittle, even if it is made of ductile materials, for example when there are sudden changes in section properties.

---end of Guidance note---

### D. Limit States

**D 100 General**

101 A limit state is a condition beyond which a structure or structural component will no longer satisfy the design requirements.

102 The following limit states are considered in this standard:

- **Ultimate limit states (ULS)** correspond to the maximum load-carrying resistance
- **Fatigue limit states (FLS)** correspond to failure due to the effect of cyclic loading
- **Accidental limit state (ALS)** correspond to damage to components due to an accidental event or operational failure
- **Serviceability limit states (SLS)** correspond to tolerance criteria applicable to normal use.

103 Examples of limit states within each category:

- **Ultimate limit states (ULS)**
  - transformation of the structure into a mechanism (collapse or excessive deformation).
- **Fatigue limit states (FLS)**
  - cumulative damage due to repeated loads.
- **Accidental limit states (ALS)**
  - accidental conditions such as structural damage caused by accidental loads and resistance of damaged structures.
- **Serviceability limit states (SLS)**
  - deflections that may alter the effect of the acting forces
  - deformations that may change the distribution of loads between supported rigid objects and the supporting structure
  - excessive vibrations producing discomfort or affecting non-structural components
  - motions that exceed the limitation of equipment
  - differential settlements of foundations soils causing intolerable tilt of the wind turbine
  - temperature-induced deformations.

### E. Design by the Partial Safety Factor Method

**E 100 General**

101 The partial safety factor method is a design method by which the target safety level is obtained as closely as possible by applying load and resistance factors to characteristic values of the governing variables and subsequently fulfilling a specified design criterion expressed in terms of these factors and these characteristic values. The governing variables consist of:

- loads acting on the structure or load effects in the structure
- resistance of the structure or strength of the materials in the structure.

102 The characteristic values of loads and resistance, or of load effects and material strengths, are chosen as specific quantiles in their respective probability distributions. The requirements to the load and resistance factors are set such that possible unfavourable realisations of loads and resistance, as well as their possible simultaneous occurrences, are accounted for to an extent which ensures that a satisfactory safety level is achieved.

**E 200 The partial safety factor format**

201 The safety level of a structure or a structural component is considered to be satisfactory when the design load effect $S_d$ does not exceed the design resistance $R_d$:

$$S_d \leq R_d$$

This is the design criterion. The design criterion is also known as the design inequality. The corresponding equation $S_d = R_d$ forms the design equation.

202 There are two approaches to establish the design load effect $S_d$ associated with a particular load $F_i$:

1. **(1) The design load effect $S_{di}$ is obtained by multiplication of the characteristic load effect $S_{ki}$ by a specified load factor $\gamma_{fi}$**

$$S_{di} = \gamma_{fi} S_{ki}$$

where the characteristic load effect $S_{ki}$ is determined in a structural analysis for the characteristic load $F_{ki}$.

2. **(2) The design load effect $S_{ki}$ is obtained from a structural analysis for the design load $F_{di}$, where the design load $F_{di}$ is obtained by multiplication of the characteristic load $F_{ki}$ by a
specified load factor $\gamma_{ti}$

$$F_{di} = \gamma_{ti} F_{ki}$$

Approach (1) shall be used to determine the design load effect when a proper representation of the dynamic response is the prime concern, whereas Approach (2) shall be used if a proper representation of nonlinear material behaviour or geometrical nonlinearities or both are the prime concern. Approach (1) typically applies to the determination of design load effects in the support structure, including the tower, from the wind loading on the turbine, whereas Approach (2) typically applies to the design of the support structure and foundation with the load effects in the tower applied as a boundary condition.

**Guidance note:**

For structural design of monopiles and other piled structures, Approach (2) can be used to properly account for the influence from the nonlinearities of the soil. In a typical design situation for a monopile, the main loads will be wind loads and wave loads in addition to permanent loads. The design combined wind and wave load effects at an appropriate interface level, such as the tower flange, can be determined from an integrated structural analysis of the tower and support structure by Approach (1) and consist of a shear force in combination with a bending moment. These design load effects can then be applied as external design loads at the chosen interface level, and the design load effects in the monopile structure and foundation pile for these design loads can then be determined from a structural analysis of the monopile structure and foundation pile by Approach (2).

---end-of-Guidance-note---

**203** The design load effect $S_d$ is the most unfavourable combined load effect resulting from the simultaneous occurrence of $n$ loads $F_i$, $i = 1,\ldots,n$. It may be expressed as

$$S_d = f(F_{d1},\ldots,F_{dn})$$

where $f$ denotes a functional relationship.

According to the partial safety factor format, the design combined load effect $S_d$ resulting from the occurrence of $n$ independent loads $F_i$, $i = 1,\ldots,n$, can be taken as

$$S_d = \sum_{i=1}^{n} S_{di}(F_{ki})$$

where $S_{di}(F_{ki})$ denotes the design load effect corresponding to the characteristic load $F_{ki}$.

When there is a linear relationship between the load $F_i$ acting on the structure and its associated load effect $S_i$ in the structure, the design combined load effect $S_d$ resulting from the simultaneous occurrence of $n$ loads $F_i$, $i = 1,\ldots,n$, can be achieved as

$$S_d = \sum_{i=1}^{n} \gamma_{ti} S_{ki}$$

**Guidance note:**

As an example, the combined load effect could be the bending stress in a vertical foundation pile, resulting from a wind load and a wave load that act concurrently on a structure supported by the pile.

---end-of-Guidance-note---

When there is a linear relationship between the load $F_i$ and its load effect $S_i$, the characteristic combined load effect $S_k$ resulting from the simultaneous occurrence of $n$ loads $F_i$, $i = 1,\ldots,n$, can be achieved as

$$S_k = \sum_{i=1}^{n} S_{ki}$$

---end-of-Guidance-note---

**204** Characteristic load effect values $S_{ki}$ are obtained as specific quantiles in the distributions of the respective load effects $S_i$. In the same manner, characteristic load values $F_{ki}$ are obtained as specific quantiles in the distributions of the respective loads $F_i$.

**Guidance note:**

Which quantiles are specified as characteristic values may depend on which limit state is considered. Which quantiles are specified as characteristic values may also vary from one specified combination of load effects to another. For further details see Sec.4F.

---end-of-Guidance-note---

**205** In this standard, design in the ULS is either based on a characteristic combined load effect $S_k$ defined as the 98% quantile in the distribution of the annual maximum combined load effect, or on a characteristic load $F_k$ defined as the 98% quantile in the distribution of the annual maximum of the combined load. The result is a combined load or a combined load effect whose return period is 50 years.

**Guidance note:**

When $n$ load processes occur simultaneously, the standard specifies more than one set of characteristic load effects $(S_{k1},\ldots,S_{kn})$ to be considered in order for the characteristic combined load effect $S_k$ to come out as close as possible to the 98% quantile. For each specified set $(S_{k1},\ldots,S_{kn})$, the corresponding design combined load effect is determined according to item 203. For use in design, the design combined load effect $S_d$ is selected as the most unfavourable value among the design combined load effects that result for these specified sets of characteristic load effects.

---end-of-Guidance-note---

**206** When the structure is subjected to the simultaneous occurrence of $n$ load processes, and the structural behaviour, e.g. the damping, is influenced by the characteristic of at least one of these loads, then it may not always be feasible to determine the design load effect $S_d$, resulting from the simultaneous occurrence of the $n$ loads, by a linear combination of separately determined individual load effects as set forth in 203. Within the framework of the partial safety factor method, the design combined load effect $S_d$, resulting from the simultaneous occurrence of the $n$ loads, may then be established as a characteristic combined load effect $S_k$ multiplied by a common load factor $\gamma$. The characteristic combined load effect $S_k$ will in this case need to be defined as a quantile in the upper tail of the distribution of the combined load effect that results in the structure from the simultaneous occurrence of the $n$ loads. In principle, the distribution of this combined load effect comes about from a structural analysis in which the $n$ respective load processes are applied simultaneously.

**Guidance note:**

As an example, the combined load effect could be the bending stress in a vertical foundation pile, resulting from a wind load and a wave load that act concurrently on a structure supported by the pile.

---end-of-Guidance-note---

When there is a linear relationship between the load $F_i$ and its load effect $S_i$, the characteristic combined load effect $S_k$ resulting from the simultaneous occurrence of $n$ loads $F_i$, $i = 1,\ldots,n$, can be achieved as

$$S_k = \sum_{i=1}^{n} S_{ki}$$

---end-of-Guidance-note---

**207** The resistance $R$ against a particular load effect $S$ is, in general, a function of parameters such as geometry, material properties, environment, and load effects themselves, the latter through interaction effects such as degradation.

**208** There are two approaches to establish the design resistance $R_d$ of the structure or structural component:
1) The design resistance $R_d$ is obtained by dividing the characteristic resistance $R_k$ by a specified material factor $\gamma_m$:

$$R_d = \frac{R_k}{\gamma_m}$$

2) The design resistance $R_d$ is obtained from the design material strength $\sigma_d$ by a capacity analysis

$$R_d = R(\sigma_d)$$

in which $R$ denotes the functional relationship between material strength and resistance and in which the design material strength $\sigma_d$ is obtained by dividing the characteristic material strength $\sigma_k$ by a material factor $\gamma_m$,

$$\sigma_d = \frac{\sigma_k}{\gamma_m}$$

Which of the two approaches applies depends on the design situation. In this standard, the approach to be applied is specified from case to case.

209 The characteristic resistance $R_k$ is obtained as a specific quantile in the distribution of the resistance. It may be obtained by testing, or it may be calculated from the characteristic values of the parameters that govern the resistance. In the latter case, the functional relationship between the resistance and the governing parameters is applied. Likewise, the characteristic material strength $\sigma_k$ is obtained as a specific quantile in the probability distribution of the material strength and may be obtained by testing.

210 Load factors account for:
- possible unfavourable deviations of the loads from their characteristic values
- the limited probability that different loads exceed their respective characteristic values simultaneously
- uncertainties in the model and analysis used for determination of load effects.

211 Material factors account for:
- possible unfavourable deviations in the resistance of materials from the characteristic value
- uncertainties in the model and analysis used for determination of resistance
- a possibly lower characteristic resistance of the materials in the structure, as a whole, as compared with the characteristic values interpreted from test specimens.

E 300 Characteristic load effect

301 For operational design conditions, the characteristic value $S_k$ of the load effect resulting from an applied load combination is defined as follows, depending on the limit state:
- For load combinations relevant for design against the ULS, the characteristic value of the resulting load effect is defined as a load effect with an annual probability of exceedance equal to or less than 0.02, i.e. a load effect whose return period is at least 50 years.
- For load combinations relevant for design against the FLS, the characteristic load effect history is defined as the expected load effect history.
- For load combinations relevant for design against the SLS, the characteristic load effect is a specified value, dependent on operational requirements.

Load combinations to arrive at the characteristic value $S_k$ of the resulting load effect are given in Sec.4.

302 For temporary design conditions, the characteristic value $S_k$ of the load effect resulting from an applied load combination is a specified value, which shall be selected dependent on the measures taken to achieve the required safety level. The value shall be specified with due attention to the actual location, the season of the year, the duration of the temporary condition, the weather forecast, and the consequences of failure.

F 400 Characteristic resistance

401 The characteristic resistance is defined as the 5% quantile in the distribution of the resistance.

F 500 Load and resistance factors

501 Load and resistance factors for the various limit states are given in Sec.5.

F. Design by Direct Simulation of Combined Load Effect of Simultaneous Load Processes

F 100 General

101 Design by direct simulation of the combined load effect of simultaneously acting load processes is similar to design by the partial safety factor method, except that it is based on a direct simulation of the characteristic combined load effect from the simultaneously applied load processes in stead of being based on a linear combination of individual characteristic load effects determined separately for each of the applied load processes.

102 For design of wind turbine structures which are subjected to two or more simultaneously acting load processes, design by direct simulation of the combined load effect may prove an attractive alternative to design by the linear load combination model of the partial safety factor method. The linear combination model of the partial safety factor method may be inadequate in cases where the load effect associated with one of the applied load processes depends on structural properties which are sensitive to the characteristics of one or more of the other load processes.

Guidance note:
The aerodynamic damping of a wind turbine depends on whether there is wind or not, whether the turbine is in power production or at stand-still, and whether the wind is aligned or misaligned with other loads such as wave loads. Unless correct assumptions can be made about the aerodynamic damping of the wind turbine in accordance with the actual status of the wind loading regime, separate determination of the load effect due to wave load alone to be used with the partial safety factor format may not be feasible.

In a structural time domain analysis of the turbine subjected concurrently to both wind and wave loading, the aerodynamic damping of the turbine will come out right since the wind loading is included, and the resulting combined load effect, usually obtained by simulations in the time domain, form the basis for interpretation of the characteristic combined load effect.

F 200 Design format

201 For design of wind turbine structures which are subjected to two or more simultaneously acting load processes, the design inequality

$$S_d \leq R_d$$

applies. The design combined load effect $S_d$ is obtained by multiplication of the characteristic combined load effect $S_k$ by a specified load factor $\gamma_f$.

$$S_d = \gamma_f S_k$$

F 300 Characteristic load effect

301 The characteristic combined load effect $S_k$ may be established directly from the distribution of the annual maxi-
Guidance note:

There may be several ways in which the 98% quantile in the distribution of the annual maximum combined load effect can be determined. Regardless of the approach, a global structural analysis model must be established, e.g. in the form of a beam-element based frame model, to which loads from several simultaneously acting load processes can be applied.

A structural analysis in the time domain is usually carried out for a specified environmental state of duration typically 10 minutes or one or 3 hours, during which period of time stationary conditions are assumed with constant intensities of the involved load processes. The input consists of concurrent time series of the respective load processes, e.g. wind load and wave load, with specified directions. The output consists of time series of load effects in specified points in the structure.

In principle, determination of the 98% quantile in the distribution of the annual maximum load effect requires structural analyses to be carried out for a large number of environmental states, viz. all those states that contribute to the upper tail of the distribution of the annual maximum load effect. Once the upper tail of this distribution has been determined by integration over the results for the various environmental states, weighted according to their frequencies of occurrence, the 98% quantile in the distribution can be interpreted.

The computational efforts can be considerably reduced when it can be assumed that the 98% quantile in the distribution of the annual maximum load effect can be estimated by the expected value of the maximum load effect in the environmental state whose return period is 50 years.

Further guidance on how to determine the 98% quantile in the distribution of the annual maximum load effect is provided in Sec.4.

--- end of Guidance note ---

F 400 Characteristic resistance

401 The characteristic resistance is to be calculated as for the partial safety factor method.

G 100 General

101 Design by testing or observation of performance is in general to be supported by analytical design methods.

102 Load effects, structural resistance and resistance against material degradation may be established by means of testing or observation of the actual performance of full-scale structures.

103 To the extent that testing is used for design, the testing shall be verifiable.
SECTION 3
SITE CONDITIONS

A. General

A 100 Definition

101 Site conditions consist of all site-specific conditions which may influence the design of a wind turbine structure by governing its loading, its capacity or both.

102 Site conditions cover virtually all environmental conditions on the site, including but not limited to meteorological conditions, oceanographic conditions, soil conditions, seismicity, biology, and various human activities.

Guidance note:

The meteorological and oceanographic conditions which may influence the design of a wind turbine structure consist of phenomena such as wind, waves, current and water level. These phenomena may be mutually dependent and for the three first of them the respective directions are part of the conditions that may govern the design.

Micro-siting of the wind turbines within a wind farm requires that local wake effects from adjacent wind turbines be considered part of the site conditions at each individual wind turbine structure in the farm.

---end-of-Guidance note---

B. Wind Climate

B 100 Wind conditions

101 For representation of wind climate, a distinction is made between normal wind conditions and extreme wind conditions. The normal wind conditions generally concern recurrent structural loading conditions, while the extreme wind conditions represent rare external design conditions. Normal wind conditions are used as basis for determination of primarily fatigue loads, but also extreme loads from extrapolation of normal operation loads. Extreme wind conditions are wind conditions that can lead to extreme loads in the components of the wind turbine and in the support structure and the foundation.

102 The normal wind conditions are specified in terms of an air density, a long-term distribution of the 10-minute mean wind speed, a wind shear in terms of a gradient in the mean wind speed with respect to height above the sea surface, and turbulence.

103 The extreme wind conditions are specified in terms of an air density in conjunction with prescribed wind events. The extreme wind conditions include wind shear events, as well as peak wind speeds due to storms, extreme turbulence, and rapid extreme changes in wind speed and direction.

104 The normal wind conditions and the extreme wind conditions shall be taken in accordance with IEC61400-1.

Guidance note:

The normal wind conditions and the extreme wind conditions, specified in IEC61400-1 and used herein, may be insufficient for representation of special conditions experienced in tropical storms such as hurricanes, cyclones and typhoons.

---end-of-Guidance note---

B 200 Parameters for normal wind conditions

201 The wind climate is represented by the 10-minute mean wind speed $U_{10}$ and the standard deviation $\sigma_U$ of the wind speed. In the short term, i.e. over a 10-minute period, stationary wind conditions with constant $U_{10}$ and constant $\sigma_U$ are assumed to prevail.

Guidance note:

The 10-minute mean wind speed $U_{10}$ is a measure of the intensity of the wind. The standard deviation $\sigma_U$ is a measure of the variability of the wind speed about the mean.

---end-of-Guidance note---

202 The arbitrary wind speed under stationary 10-minute conditions in the short term follows a probability distribution whose mean value is $U_{10}$ and whose standard deviation is $\sigma_U$.

203 The turbulence intensity is defined as the ratio $\sigma_U/U_{10}$.

204 The short term 10-minute stationary wind climate may be represented by a wind spectrum, i.e. the power spectral density function of the wind speed process, $S(f)$. $S(f)$ is a function of $U_{10}$ and $\sigma_U$ and expresses how the energy of the wind speed is distributed between various frequencies.

B 300 Wind data

301 Wind speed statistics are to be used as a basis for representation of the long-term and short-term wind conditions. Empirical statistical data used as a basis for design must cover a sufficiently long period of time.

Guidance note:

Site-specific measured wind data over sufficiently long periods with minimum or no gaps are to be sought.

---end-of-Guidance note---

302 Wind speed data are height-dependent. The mean wind speed at the hub height of the wind turbine shall be used as a reference. When wind speed data for other heights than the reference height are not available, the wind speeds in these heights can be calculated from the wind speeds in the reference height in conjunction with a wind speed profile above the still water level.

303 The long-term distributions of $U_{10}$ and $\sigma_U$ should preferably be based on statistical data for the same averaging period for the wind speed as the averaging period which is used for the determination of loads. If a different averaging period than 10 minutes is used for the determination of loads, the wind data may be converted by application of appropriate gust factors. The short-term distribution of the arbitrary wind speed itself is conditional on $U_{10}$ and $\sigma_U$.

Guidance note:

An appropriate gust factor to convert wind statistics from other averaging periods than 10 minutes depends on the frequency location of a spectral gap, when such a gap is present. Application of a fixed gust factor, which is independent of the frequency location of a spectral gap, can lead to erroneous results.

The latest insights for wind profiles above water should be considered for conversion of wind speed data between different reference heights or different averaging periods.

Unless data indicate otherwise, the following expression can be used for calculation of the mean wind speed $U$ with averaging period $T$ at height $z$ above sea level as:

$$U(T, z) = U_{10} \cdot (1 + 0.137 \ln \frac{z}{h} - 0.047 \ln \frac{T}{T_{10}})$$

where $h = 10$ m and $T_{10} = 10$ minutes, and where $U_{10}$ is the 10-minute mean wind speed at height $h$. This expression converts mean wind speeds between different averaging periods. When $T < T_{10}$, the expression provides the most likely largest mean wind speed over the specified averaging period $T$, given the original 10-minute averaging period with stationary conditions and given the specified 10-minute mean wind speed $U_{10}$. The conversion does not preserve the return period associated with $U_{10}$.
expression originates from the NORSOK standard and is representative for North Sea conditions.

For extreme mean wind speeds corresponding to specified return periods in excess of approximately 50 years, the following expression can be used for conversion of the one-hour mean wind speed \( U_0 \) at height \( h \) above sea level to the mean wind speed \( U \) with averaging period \( T \) at height \( z \) above sea level

\[
U(T, z) = U_0 \cdot \left( 1 + C \cdot \ln \frac{z}{h} \right) \cdot \left( 1 - 0.41 \cdot I_U(z) \cdot \ln \frac{T}{T_0} \right)
\]

where \( h = 10 \) m, \( T_0 = 1 \) hour and \( T < T_0 \) and where

\[
C = 5.73 \cdot 10^{-2} \sqrt{1 + 0.15U_0}
\]

and

\[
I_U = 0.06 \cdot (1 + 0.043U_0) \cdot \left( \frac{z}{h} \right)^{-0.22}
\]

and where \( U \) will have the same return period as \( U_0 \).

This conversion expression is recognised as the Frøya wind profile. More details can be found in DNV-RP-C205.

Both conversion expressions are based on data from North Sea and Norwegian Sea locations and may not necessarily lend themselves for use at other offshore locations. The expressions should not be extrapolated for use beyond the height range for which they are calibrated, i.e. they should not be used for heights above approximately 100 m. Possible influences from geostrophic winds down to about 100 m height emphasises the importance of observing this restriction.

Both expressions are based on the application of a logarithmic wind profile. For locations where an exponential wind profile is used or prescribed, the expressions should be considered used only for conversions between different averaging periods at a height \( z \) equal to the reference height \( h = 10 \) m.

304 Empirical statistical wind data used as a basis for design must cover a sufficiently long period of time.

Guidance note:

Wind speed data for the long-term determination of the 10-minute mean wind speed \( U_{10} \) are usually available for power output prediction. Turbulence data are usually more difficult to establish, in particular because of wake effects from adjacent operating wind turbines. The latest insights for wind profiles within wind farms should be considered.

305 The wind velocity at the location of the structure shall be established on the basis of previous measurements at the actual location and adjacent locations, hindcast predictions as well as theoretical models and other meteorological information. If the wind velocity is of significant importance to the design and existing wind data are scarce and uncertain, wind velocity measurements should be carried out at the location in question.

306 Characteristic values of the wind velocity should be determined with due account of the inherent uncertainties.

307 Characteristic values of the wind velocity shall be determined with due account of wake effects owing to the presence of other wind turbines upstream, such as in a wind farm.

Guidance note:

A wind farm generates its own wind climate due to downstream wake effects, and the wind climate in the centre of the wind farm may therefore be very different from the ambient wind climate. The layout of the wind farm has an impact on the wind at the individual wind turbines. Wake effects in a wind farm will in general imply a considerably increased turbulence, reflected in an increased standard deviation \( \sigma_U \) of the wind speed. This effect may be significant even when the spacing between the wind turbines in the wind farm is as large as 8 to 10 rotor diameters. Wake effects in a wind farm may also imply a reduction in the 10-minute mean wind speed \( U_{10} \) relative to that of the ambient wind climate.

Wake effects in wind farms will often dominate the fatigue loads in offshore wind turbine structures.

Wake effects fade out more slowly and over longer distances offshore than they do over land.

For assessment of wake effects in wind farms, the effects of changed wind turbine positions within specified installation tolerances for the wind turbines relative to their planned positions should be evaluated.

308 Wind speed data are usually specified for a specific reference temperature. When wind speed data are used for structural design, it is important to be aware of this reference temperature, in particular with a view to the operation philosophy adopted for the wind turbine design and the temperature assumptions made in this context.

Guidance note:

The wind load on a wind turbine tower is induced by the wind pressure which depends both on density and wind speed. The wind load on the rotor does not depend on the wind pressure alone but also on stall characteristics of the blade profile and active control of the blade pitch and the rotor speed. Design loads in type certification normally refer to an air density of 1.225 kg/m³. Project specific design loads shall address the air density observed with the wind speed measurements in a rational manner. The air density can increase by up to 10% in arctic areas during the winter season.

380 Wind speed data are usually specified for a specific reference temperature. When wind speed data are used for structural design, it is important to be aware of this reference temperature, in particular with a view to the operation philosophy adopted for the wind turbine design and the temperature assumptions made in this context. Guidance note:

The wind load on a wind turbine tower is induced by the wind pressure which depends both on density and wind speed. The wind load on the rotor does not depend on the wind pressure alone but also on stall characteristics of the blade profile and active control of the blade pitch and the rotor speed. Design loads in type certification normally refer to an air density of 1.225 kg/m³. Project specific design loads shall address the air density observed with the wind speed measurements in a rational manner. The air density can increase by up to 10% in arctic areas during the winter season.

B 400 Wind modelling

401 The spectral density of the wind speed process expresses how the energy of the wind turbulence is distributed between different frequencies. The spectral density of the wind speed process including wake effects from any upstream wind turbines is ultimately of interest.

Guidance note:

The latest insights for wind spectrum modelling within wind farms should be considered when the spectral density of the wind speed process is to be established.

402 Site-specific spectral densities of the wind speed process can be determined from available measured wind data. When measured wind data are insufficient to establish site-specific spectral densities, it is recommended to use a spectral density model which fulfils that the spectral density \( S_U(f) \) asymptotically approaches the following form as the frequency \( f \) in the inertial subrange increases:

\[
S_U(f) = 0.202\sigma_U^2 \left( \frac{L_k}{U_{10}} \right)^{2} \frac{f}{3}^{5/3}
\]

403 Unless data indicate otherwise, the spectral density of the wind speed process may be represented by the Kaimal spectrum,

\[
S_U(f) = \sigma_U^2 \frac{4 L_k}{U_{10}} \left( 1 + 6 \frac{L_k}{U_{10}} \right)^{5/3}
\]

in which \( f \) denotes frequency, and the integral scale parameter

---end---of---Guidance---note---
$L_k$ is to be taken as

$$L_k = \begin{cases} 5.67z & \text{for } z < 60 \text{ m} \\ 340.2 \text{ m} & \text{for } z \geq 60 \text{ m} \end{cases}$$

where $z$ denotes the height above the seawater level. This model spectrum fulfills the requirement in 402. Other model spectra for wind speed processes than the Kaimal spectrum can be found in DNV-RP-C205.

**Guidance note:**

Caution should be exercised when model spectra such as the Kaimal spectrum are used. In particular, it is important to beware that the true length scale may deviate significantly from the length scale $L_k$ of the model spectrum.

The Kaimal spectrum and other model spectra can be used to represent the upstream wind field in front of the wind turbine. However, a rotational sampling turbulence due to the rotation of the rotor blades will come in addition to the turbulence of the upstream wind field as represented by the model spectrum and will increase the wind fluctuations that the rotor blades effectively will experience.

For wind turbines located behind other wind turbines in a wind farm, the wind fluctuations represented by the model spectrum will become superimposed by an additional turbulence due to wake effects behind upstream wind turbines.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

404 The long-term probability distributions for the wind climate parameters $U_{10}$ and $\sigma_1$ that are interpreted from available data can be represented in terms of generic distributions or in terms of scattergrams. A typical generic distribution representation consists of a Weibull distribution for the 10-minute mean wind speed $U_{10}$ in conjunction with a lognormal distribution of $\sigma_1$ conditional on $U_{10}$. A scattergram provides the frequency of occurrence of given pairs $(U_{10}, \sigma_1)$ in a given discretisation of the $(U_{10}, \sigma_1)$ space.

405 Unless data indicate otherwise, a Weibull distribution can be assumed for the 10-minute mean wind speed $U_{10}$ in a given height $H$ above the seawater level,

$$F_{U_{10}}(u) = 1 - \exp(-\left(\frac{u}{A}\right)^k)$$

in which the scale parameter $A$ and the shape parameter $k$ are site- and height-dependent.

**Guidance note:**

In areas where hurricanes occur, the Weibull distribution as determined from available 10-minute wind speed records may not provide an adequate representation of the upper tail of the true distribution of $U_{10}$. In such areas, the upper tail of the distribution of $U_{10}$ needs to be determined on the basis of hurricane data.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

406 The wind speed profile represents the variation of the wind speed with height above the seawater level.

**Guidance note:**

A logarithmic wind speed profile may be assumed,

$$u(z) \propto \ln \left(\frac{z}{z_0}\right)$$

in which $z$ is the height above the seawater level and $z_0$ is a roughness parameter, which for offshore locations depends on the wind speed, the upstream distance to land, the water depth and the wave field. The logarithmic wind speed profile implies that the scale parameter $A(z)$ in height $z$ can be expressed in terms of the scale parameter $A(H)$ in height $H$ as follows

$$A(z) = A(H) \left(\frac{z_0}{H}\right)$$

The roughness parameter $z_0$ typically varies between 0.0001 m in open sea without waves and 0.003 m in coastal areas with onshore wind. The roughness parameter may be solved implicitly from the following equation:

$$z_0 = \frac{A_C}{g} \left(\frac{2\kappa U_{10}}{\ln(z/z_0)}\right)^2$$

where $g$ is the acceleration of gravity, $\kappa = 0.4$ is von Karman’s constant, and $A_C$ is Charnock’s constant. For open sea with fully developed waves, $A_C = 0.011$ to 0.014 is recommended. For near-coastal locations, $A_C$ is usually higher with values of 0.018 or more. Whenever extrapolation of wind speeds to other heights than the height of the wind speed measurements is to be carried out, conservative worst-case values of $A_C$ should be applied.

As an alternative to the logarithmic wind profile, the power law profile may be assumed,

$$u(z) = U_{10}(H) \left(\frac{z}{H}\right)^\alpha$$

Offshore wind profiles can be governed more by atmospheric stability than by the roughness parameter $z_0$. For stability corrections of wind profiles reference is made to DNV-RP-C205.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

407 Let $F_{U_{10}}(u)$ denote the long-term distribution of the 10-minute mean wind speed $U_{10}$. In areas where hurricanes do not occur, the distribution of the annual maximum 10-minute mean wind speed $U_{10,\text{max}}$ can be approximated by

$$F_{U_{10,\text{max}},1\text{ year}}(u) = (F_{U_{10}}(u))^N$$

where $N = 52.560$ is the number of stationary 10-minute periods in one year.

**Guidance note:**

The quoted power-law approximation to the distribution of the annual maximum 10-minute mean wind speed is a good approximation to the upper tail of this distribution. Usually only quantiles in the upper tail of the distribution are of interest, viz. the 98% quantile which defines the 50-year mean wind speed. The upper tail of the distribution can be well approximated by a Gumbel distribution, whose expression is more operational than the quoted power-law expression.

Since the quoted power-law approximation to the distribution of the annual maximum 10-minute mean wind speed is used to estimate the 50-year mean wind speed by extrapolation, caution must be exercised when the underlying distribution $F_{U_{10}}$ of the arbitrary 10-minute mean wind speed is established. This applies in particular if $F_{U_{10}}$ is represented by the Weibull distribution of $U_{10}$ commonly used for prediction of the annual power production from the wind turbine, since this distribution is usually fitted to mid-range wind velocities and may not necessarily honour high-range wind speed data adequately.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

408 The 10-minute mean wind speed with return period $T_R$ in units of years is defined as the $(1 - 1/T_R)$ quantile in the distribution of the annual maximum 10-minute mean wind speed, i.e. it is the 10-minute mean wind speed whose probability of exceedance in one year is $1/T_R$. It is denoted $U_{10,TR}$ and is
expressed as

\[ U_{10,R} = F_{U_{10,\max,1\text{-year}}}^{-1}(1 - \frac{1}{R}) \]

in which \( R \) \( > 1 \) year and \( F_{U_{10,\max,1\text{-year}}} \) denotes the cumulative distribution function of the annual maximum of the 10-minute mean wind speed.

The 10-minute mean wind speed with return period one year is defined as the mode of the cumulative distribution function of the annual maximum of the 10-minute mean wind speed.

**Guidance note:**

The 50-year 10-minute mean wind speed becomes \( U_{10,50} = F_{U_{10,\max,1\text{-year}}}^{-1}(0.998) \) and the 100-year 10-minute mean wind speed becomes \( U_{10,100} = F_{U_{10,\max,1\text{-year}}}^{-1}(0.999) \).

Note that these values, calculated as specified, are to be considered as central estimates of the respective 10-minute wind speeds when the underlying distribution function \( F_{U_{10,\max}} \) is determined from limited data and is encumbered with statistical uncertainty.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

409 The natural variability of the wind speed about the mean wind speed \( U_{10} \) in a 10-minute period is known as turbulence and is characterised by the standard deviation \( \sigma_{U_{10}} \). For given value of \( U_{10} \), the standard deviation \( \sigma_{U} \) of the wind speed exhibits a natural variability from one 10-minute period to another. Caution should be exercised when fitting a distribution model to data for the standard deviation \( \sigma_{U_{10}} \). Often, the lognormal distribution provides a good fit to data for \( \sigma_{U_{10}} \) conditioned on \( U_{10} \), but use of a normal distribution, a Weibull distribution or a Frechet distribution is also seen. The choice of the distribution model may depend on the application, i.e., whether a good fit to data is required to the entire distribution or only in the body or the upper tail of the distribution.

**Guidance note:**

When the lognormal distribution is an adequate distribution model, the distribution of \( \sigma_{U_{10}} \) conditioned on \( U_{10} \) can be expressed as

\[ F_{\sigma_{U_{10}}} (\sigma) = \Phi\left(\ln \sigma - \frac{b_0}{b_1}\right) \]

in which \( \Phi() \) denotes the standard Gaussian cumulative distribution function. The coefficients \( b_0 \) and \( b_1 \) are site-dependent coefficients dependent on \( U_{10} \).

The coefficient \( b_0 \) can be interpreted as the mean value of \( \ln \sigma_{U_{10}} \), and \( b_1 \) as the standard deviation of \( \ln \sigma_{U_{10}} \). The following relationships can be used to calculate the mean value \( E[\sigma_{U_{10}}] \) and the standard deviation \( D[\sigma_{U_{10}}] \) of \( \sigma_{U_{10}} \) from the values of \( b_0 \) and \( b_1 \):

\[ E[\sigma_{U_{10}}] = \exp(b_0 + \frac{1}{2} b_1^2) \]

\[ D[\sigma_{U_{10}}] = E[\sigma_{U_{10}}] \left(\exp(b_1^2) - 1\right) \]

\( E[\sigma_{U_{10}}] \) and \( D[\sigma_{U_{10}}] \) will, in addition to their dependency on \( U_{10} \), also depend on local conditions, first of all the surface roughness \( z_0 \).

Caution should be exercised when the distribution of \( \sigma_{U_{10}} \) conditioned on \( U_{10} \) is interpreted from data. It is important to identify and remove data, which belong to 10-minute series for which the stationarity assumption for \( U_{10} \) is not fulfilled. If this is not done, such data may confuse the determination of an appropriate distribution model for \( \sigma_{U_{10}} \) conditioned on \( U_{10} \). Techniques for “detrending” of data are available for application in the case that the mean wind speed follows a trend rather than stays stationary during a considered 10-minute period.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

410 Let \( U_{10} \) and \( \sigma_{U_{10}} \) denote the 10-minute mean wind speed and the standard deviation of the wind speed, respectively, in a considered 10-minute period of stationary wind conditions. Unless data indicate otherwise, the short-term probability dis-

411 Practical information regarding wind modelling is given in DNV-OS-J101, in IEC61400-1 and in DNV/Riso Guidelines for Design of Wind Turbines.

**B 500 Reference wind conditions and reference wind speeds**

501 For use in load combinations for design, a number of reference wind conditions and reference wind speeds are defined.

502 The Normal Wind Profile (NWP) represents the average wind speed as a function of height above sea level.

**Guidance note:**

For standard wind turbine classes according to IEC61400-1, the normal wind profile is given by the power law model with exponent \( \alpha = 0.2 \). For offshore locations it is recommended to apply an exponent \( \alpha = 0.14 \).

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

503 The Normal Turbulence Model (NTM) represents turbulent wind speed in terms of a characteristic standard deviation of wind speed, \( \sigma_{U_{10}} \). The characteristic standard deviation \( \sigma_{U_{10}} \) is defined as the 90% quantile in the probability distribution of the standard deviation \( \sigma_{U_{10}} \) of the wind speed conditioned on the 10-minute mean wind speed at the hub height.

**Guidance note:**

For standard wind turbine classes according to IEC61400-1, prescribed values for the characteristic standard deviation \( \sigma_{U_{10}} \) are given in IEC61400-1.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

504 The Extreme Wind Speed Model (EWM) is used to represent extreme wind conditions with a specified return period, usually either one year or 50 years. It shall be either a steady wind model or a turbulent wind model. In case of a steady wind model, the extreme wind speed \( (U_{EWM}) \) at the hub height with a return period of 50 years shall be calculated as

\[ U_{h,50-yr} = 1.4 \cdot U_{10,hub,50-yr} \]

where \( U_{10,hub,50-yr} \) denotes the 10-minute mean wind speed at the hub height with a return period of 50 years. The extreme wind speed \( (U_{EWM}) \) at the hub height with a return period of one year shall be calculated as

\[ U_{h,3-yr} = 0.8 \cdot U_{hub,50-yr} \]

The quantities \( U_{hub,50-yr} \) and \( U_{hub,1-yr} \) refer to wind speed averaged over three seconds. In the steady extreme wind model, allowance for short-term deviations from the mean wind direction shall be made by assuming constant yaw misalignment in the range of \( \pm 15^\circ \). The turbulent extreme wind model makes use of the 10-minute mean wind speed at the hub height with a return period of 50
years, \( U_{10,\text{hub},50-yr} \). The 10-minute mean wind speed at the hub height with a return period of one year shall be calculated as
\[
U_{10,\text{hub},1-yr} = 0.8 \cdot U_{10,\text{hub},50-yr}
\]
Further, for representation of turbulent wind speeds, the turbulent extreme wind model makes use of a characteristic standard deviation of the wind speed. The characteristic standard deviation of the wind speed shall be calculated as
\[
\sigma_{U,c} = 0.11 \cdot U_{10,\text{hub}}
\]

**Guidance note:**

For calculation of wind speeds and 10-minute mean wind speeds at other heights than the hub height, IEC61400-1 prescribes a wind profile given by the power law model with exponent \( \alpha = 0.11 \).

---end of Guidance note---

The Extreme Operating Gust (EOG) at the hub height has a magnitude which shall be calculated as
\[
V_{\text{gust}} = \min \left\{ 1.35(U_{\text{hub},1-yr} - U_{10,\text{hub}}), \frac{3.3\sigma_{U,c}}{1 + 0.1D/\Lambda_1} \right\}
\]
where
\[
\sigma_{U,c} = \text{characteristic standard deviation of wind speed, defined as 90\% quantile in the probability distribution of } \sigma_U
\]
\( \Lambda_1 = \text{longitudinal turbulence scale parameter, is related to the integral scale parameter } L_k \text{ of the Kaimal spectral density through the relationship } L_k = 8.1\Lambda_1 \)
\( D = \text{rotor diameter.} \)

The wind speed \( V \) as a function of height \( z \) and time \( t \) shall be defined as follows
\[
V(z,t) = \left\{ \begin{array}{ll}
0 & \text{for } 0 \leq t \leq T \\
\frac{u(z) - 0.37V_{\text{gust}} \sin(\frac{3\pi \cdot t}{T}) (1 - \cos(\frac{2\pi \cdot t}{T}))}{u(z)} & \text{otherwise}
\end{array} \right.
\]
where
\( T = 10.5 \text{ sec} \)
and
\( u(z) \) is defined by the Normal Wind Profile.

An example of extreme operating gust at the hub height is given in Figure 1 for a case where the 10-minute mean wind speed is 25 m/sec.

\[\text{Figure 1}\]
Example of extreme operating gust

\[\text{Figure 2}\]
Example of extreme direction change magnitude

---end of Guidance note---
The Extreme Coherent Gust with Direction Change (ECD) shall have a magnitude of 

\[ V_{cg} = 15 \text{ m/sec}. \]

The wind speed \( V \) as a function of height \( z \) and time \( t \) shall be defined as follows

\[
V(z,t) = \begin{cases} 
  u(z) & \text{for } t < 0 \\
  u(z) + 0.5V_{cg}(1 - \cos(\pi \cdot \frac{t}{T})) & \text{for } 0 \leq t \leq T \\
  u(z) + V_{cg} & \text{for } t > T
\end{cases}
\]

where \( T = 10 \) sec is the rise time and \( u(z) \) is the wind speed given in 502. The extreme coherent gust is illustrated in Figure 4 for \( V_{hub} = U_{10,hub} = 25 \) m/s.

The rise in wind speed (described by the extreme coherent gust, see Figure 4) shall be assumed to occur simultaneously with the direction change \( \theta \) from 0 degrees up to and including \( \theta_{cg} \), where \( \theta_{cg} \) is defined by:

\[
\theta(t) = \begin{cases} 
  0 & \text{for } t < 0 \\
  \pm 0.5\theta_{cg}(1 - \cos(\pi \cdot \frac{t}{T})) & \text{for } 0 \leq t \leq T \\
  \pm \theta_{cg} & \text{for } t > T
\end{cases}
\]

The direction change \( \theta_{cg} \) is shown in Figure 5 as a function of the 10-minute mean wind speed \( V_{hub} = U_{10,hub} = 25 \) m/s.

The Extreme Wind Shear (EWS) model is used to account for extreme transient wind shear events. It consists of a transient vertical wind shear and a transient horizontal wind shear. The extreme transient positive and negative vertical shear shall be calculated as

\[
V(z,t) = \begin{cases} 
  U_{10,hub} \left( \frac{z - z_{hub}}{D} \right)^{2.5 + 0.2\beta_{L}} \left( \frac{D}{L} \right)^{2.5} \left( 1 - \cos\left( \frac{2\pi t}{T} \right) \right) & \text{for } 0 \leq t \leq T \\
  \text{otherwise}
\end{cases}
\]

The extreme transient horizontal shear shall be calculated as

\[
V(y,z,t) = \begin{cases} 
  U_{10,hub} \left( \frac{y - y_{hub}}{D} \right)^{2.5 + 0.2\beta_{L}} \left( \frac{D}{L} \right)^{2.5} \left( 1 - \cos\left( \frac{2\pi t}{T} \right) \right) & \text{for } 0 \leq t \leq T \\
  \text{otherwise}
\end{cases}
\]
Here, $U_1(z)$ denotes the wind shear profile according to the Normal Wind Profile model, $z$ is the height above sea level, $\zeta_{hub}$ is the hub height, $y$ is the lateral cross-wind distance, $\lambda_0$ is the longitudinal turbulence scale parameter, $\sigma_{u_z}$ is the characteristic standard deviation of wind speed, defined according to the Normal Turbulence Model as the 90% quantile in the probability distribution of $\sigma_u$, $D$ is the rotor diameter, $\beta = 6.4$ and $T = 12$ sec.

The sign for the horizontal wind shear transient shall be chosen in such a manner that the most unfavourable transient loading occurs. The extreme transient horizontal shear and the extreme transient vertical shear shall not be applied simultaneously.

Guidance note:
For standard wind turbine classes according to IEC61400-1, the normal wind profile $U_1(z)$ is given by the power law model with an exponent $\alpha = 0.2$. For offshore locations it is recommended to apply an exponent $\alpha = 0.14$.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

510 The Reduced Wind Speed Model (RWM) defines a companion wind speed $U_{\text{RWM}}$ to be used in combination with the extreme wave height (EWH) for definition of an extreme event with a specified return period. The reduced wind speed can be expressed as a fraction of the extreme wind speed, $U_{\text{RWM}} = \psi \cdot U_{\text{EWH}}$, $\psi < 1$. The Reduced Wind Speed is used for definition of events with return periods of 50 years and 1 year, and the corresponding reduced wind speeds are denoted $U_{\text{Red,50-yr}}$ and $U_{\text{Red,1-yr}}$ respectively.

Guidance note:
IEC61400-3/CD requires use of $U_{\text{Red,50-yr}} = 1.1U_{\text{EWH}}$, which implies $\psi = 0.79$. Other values for $\psi$ can be applied, provided they can be substantiated by site-specific data.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

C 100 Wave parameters

101 The wave climate is represented by the significant wave height $H_S$ and the spectral peak period $T_P$. In the short term, i.e. over a 3-hour or 6-hour period, stationary wave conditions with constant $H_S$ and constant $T_P$ are assumed to prevail.

Guidance note:
The significant wave height $H_S$ is defined as four times the standard deviation of the sea elevation process. The significant wave height is a measure of the intensity of the wave climate as well as of the variability in the arbitrary wave heights. The peak period $T_P$ is related to the mean zero-crossing period $T_Z$ of the sea elevation process.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

102 The wave height $H$ of a wave cycle is the difference between the highest crest and the deepest trough between two successive zero-upcrossings of the sea elevation process. The arbitrary wave height $H$ under stationary 3- or 6-hour conditions in the short term follows a probability distribution which is a function of the significant wave height $H_S$.

105 The short term 3- or 6-hour sea state may be represented by a wave spectrum, i.e. the power spectral density function of the sea elevation process, $S(f)$. $S(f)$ is a function of $H_S$ and $T_P$ and expresses how the energy of the sea elevation is distributed between various frequencies.

C 200 Wave data

201 Wave statistics are to be used as a basis for representation of the long-term and short-term wave conditions. Empirical statistical data used as a basis for design must cover a sufficiently long period of time.

Guidance note:
Wave data obtained on site are to be preferred over wave data observed at an adjacent location. Measured wave data are to be preferred over visually observed wave data. Continuous records of data are to be preferred over records with gaps. Longer periods of observation are to be preferred over shorter periods.

When no site-specific wave data are available and data from adjacent locations are to be capitalised on in stead, proper transformation of such other data shall be performed to account for possible differences due to different water depths and different seabed topographies. Such transformation shall take effects of shoaling and refraction into account.

Hindcast of wave data may be used to extend measured time series, or to interpolate to places where measured data have not been collected. If hindcast is used, the hindcast model shall be calibrated against measured data to ensure that the hindcast results comply with available measured data.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

202 The long-term distributions of $H_S$ and $T_P$ should preferably be based on statistical data for the same reference period for the waves as the reference period which is used for the determination of loads. If a different reference period than 3 or 6 hours is used for the determination of loads, the wave data may be converted by application of appropriate adjustment factors.

Guidance note:
When the long-term distribution of the arbitrary significant wave height $H_S$ is given by a Weibull distribution,

$$ F_{H_S}(h) = 1 - \exp\left(-\left(\frac{h}{h_0}\right)^\beta \right) $$

the significant wave height $H_{5,T_S}$ for a reference period of duration $T_S$ can be obtained from the significant wave height $H_{5,T_{50}}$ for a reference period of duration $T_{50}$ according to the following relationship,

$$ H_{5,T_S} = H_{5,T_{50}} \cdot \left(1 + \frac{\ln(T_{50}/T_S)}{\ln(N_0/R)}\right)^\frac{1}{\beta} $$

in which $N_0$ is the number of sea states of duration $T_{50}$ in one year and $T_P$ is the specified return period of the significant wave height, which is to be converted. $N_0 = 2920$ when $T_{50} = 3$ hours. $T_P$ must be given in units of years.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

203 Wave climate and wind climate are correlated, because waves are usually wind-generated. The correlation between wave data and wind data shall be accounted for in design.

Guidance note:
Simultaneous observations of wave and wind data in terms of simultaneous values of $H_S$ and $U_{10}$ should be obtained. It is recommended that directionality of wind and waves are recorded. Extreme waves may not always come from the same direction as extreme winds. This may in particular be so when the fetch in the direction of the extreme winds is short.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---
Within a period of stationary wind and wave climates, individual wind speeds and wave heights can be assumed independent and uncorrelated.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

C 300 Wave modelling

301 Site-specific spectral densities of the sea elevation process can be determined from available wave data.

302 Unless data indicate otherwise, the spectral density of the sea elevation process may be represented by the JONSWAP spectrum,

\[ S(f) = \frac{\alpha g^2}{(2\pi)^4} f^{-5} \exp \left( -\frac{5}{4} \left( \frac{f}{f_p} \right)^4 \right) \exp \left( -0.5 \left( \frac{f-f_p}{\sigma f_p} \right)^2 \right) \]

where

- \( f \) = wave frequency, \( f = 1/T \)
- \( T \) = wave period
- \( f_p \) = spectral peak frequency, \( f_p = 1/T_p \)
- \( T_p \) = peak period
- \( g \) = acceleration of gravity
- \( \alpha \) = generalised Phillips' constant
- \( \sigma \) = spectral width parameter
- \( \gamma \) = peak-enhancement factor

The zero-upcrossing period \( T_Z \) depends on the peak period \( T_p \) through the following relationship,

\[ T_Z = T_p \sqrt{\frac{5 + \gamma}{11 + \gamma}} \]

The peak-enhancement factor is

\[ \gamma = \begin{cases} 5 & \text{for} \quad \frac{T_p}{\sqrt{H_S}} \leq 3.6 \\ \exp(5.75 - 1.15 \left( \frac{T_p}{\sqrt{H_S}} \right)) & \text{for} \quad 3.6 < \frac{T_p}{\sqrt{H_S}} \leq 5 \\ 1 & \text{for} \quad 5 < \frac{T_p}{\sqrt{H_S}} \end{cases} \]

where \( T_p \) is in seconds and \( H_S \) is in metres.

Guidance note:

When \( \gamma = 1 \) the JONSWAP spectrum reduces to the Pierson-Moskowitz spectrum.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

303 The long-term probability distributions for the wave climate parameters \( H_S \) and \( T_p \) that are interpreted from available data can be represented in terms of generic distributions or in terms of scattergrams. A typical generic distribution representation consists of a Weibull distribution for the significant wave height \( H_S \) in conjunction with a lognormal distribution of \( T_p \) conditional on \( H_S \). A scattergram gives the frequency of occurrence of given pairs \((H_S,T_p)\) in a given discretisation of the \((H_S,T_p)\) space.

304 Unless data indicate otherwise, a Weibull distribution can be assumed for the significant wave height,

\[ F_{H_S}(h) = 1 - \exp\left( -\frac{h}{\alpha} \right) \]

305 When \( F_{H_S}(h) \) denotes the distribution of the significant wave height in an arbitrary t-hour sea state, the distribution of the annual maximum significant wave height \( H_{S,\text{max}} \) can be taken as

\[ F_{H_{S,\text{max}}}(h) = \left( F_{H_S}(h) \right)^N \]

where \( N \) is the number of t-hour sea states in one year. For \( t = 3 \) hours, \( N = 2920 \).

Guidance note:

The quoted power-law approximation to the distribution of the annual maximum significant wave height is a good approximation to the upper tail of this distribution. Usually only quantiles in the upper tail of the distribution are of interest, in particular the 98% quantile which defines the 50-year significant wave height. The upper tail of the distribution can be well approximated by a Gumbel distribution, whose expression is more operational than the quoted power-law expression.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

306 The significant wave height with return period \( T_R \) in units of years is defined as the \((1 - 1/T_R)\) quantile in the distribution of the annual maximum significant wave height, i.e. it is the significant wave height whose probability of exceedance in one year is \( 1/T_R \). It is denoted \( H_{S,TR} \) and is expressed as

\[ H_{S,TR} = F_{H_{S,\text{max}}}(h) = \left( F_{H_S}(h) \right)^N \]

in which \( T_R > 1 \) year.

The significant wave height with return period one year is defined as the mode of the distribution function of the annual maximum of the significant wave height.

Guidance note:

The 50-year significant wave height becomes

\[ H_{S,50} = F_{H_{S,\text{max}}}(0.98) \]

and the 100-year significant wave height becomes

\[ H_{S,100} = F_{H_{S,\text{max}}}(0.99) \]

Note that these values, calculated as specified, are to be considered as central estimates of the respective significant wave heights when the underlying distribution function \( F_{H_{S,\text{max}}} \) is determined from limited data and is encumbered with statistical uncertainty.

In the southern and central parts of the North Sea, experience shows that the ratio between the 100- and 50-year significant wave heights \( H_{S,100}/H_{S,50} \) attains a value approximately equal to 1.04 to 1.05. Unless data indicate otherwise, this value of the ratio \( H_{S,100}/H_{S,50} \) may be applied to achieve the 50-year significant wave height \( H_{S,50} \) in cases where only the 100-year value \( H_{S,100} \) is available, provided the location in question is located in the southern or central parts of the North Sea.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

307 In deep waters, the short-term probability distribution of the arbitrary wave height \( H \) can be assumed to follow a Rayleigh distribution when the significant wave height \( H_S \) is given,

\[ F_{H_H}(h) = 1 - \exp\left( -\frac{2h^2}{(1-v^2)H_S^2} \right) \]

where \( F_{H_H} \) denotes the cumulative distribution function and \( v \) is a spectral width parameter whose value is \( v = 0.0 \) for a narrow-banded sea elevation process.

The maximum wave height \( H_{\text{max}} \) in a 3-hour sea state characterised by a significant wave height \( H_S \) can be calculated as a constant factor times \( H_S \).

Guidance note:

The maximum wave height in a sea state can be estimated by the mean of the highest wave height in the record of waves that occur during the sea state, or by the most probable highest wave height in the record. The most probable highest wave height is also
known as the mode of the highest wave height. Both of these estimates for the maximum wave height in a sea state depend on the number of waves, N, in the record. N can be defined as the ratio between the duration $T_S$ of the sea state and the mean zero-upcrossing period $T_Z$ of the waves. For a narrow-banded sea elevation process, the appropriate expression for the mean of the highest wave height $H_{\text{max,mean}}$ reads

$$H_{\text{max,mean}} = \left[ \frac{1}{2} \ln N + \frac{0.2886}{2 \ln N} \right] H_S$$

while the expression for the mode of the highest wave height reads

$$H_{\text{max,mode}} = \left[ \frac{1}{2} \ln N \right] H_S$$

For a sea state of duration $T_S = 3$ hours and a mean zero-upcrossing period $T_Z$ of about 10.8 sec, $N = 1000$ results. For this example, the mean of the highest wave height becomes $H_{\text{max}} = 1.936H_S \approx 1.94H_S$, while the mode of the highest wave height becomes $H_{\text{max}} = 1.858H_S \approx 1.86H_S$. For shorter mean zero-upcrossing periods than the assumed 10.8 sec, N becomes larger, and so does the factor on $H_S$. Table C1 gives the ratio $H_{\text{max}}/H_S$ for various values of $N$.

### Table C1 Ratio for deep water waves in narrow-banded sea elevation process

<table>
<thead>
<tr>
<th>No. of waves $N = T_S/T_Z$</th>
<th>Ratio $H_{\text{max}}/H_S$</th>
<th>mode</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>1.763</td>
<td>1.845</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>1.858</td>
<td>1.936</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>1.912</td>
<td>1.988</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>1.949</td>
<td>2.023</td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td>1.978</td>
<td>2.051</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>2.064</td>
<td>2.134</td>
<td></td>
</tr>
</tbody>
</table>

Other ratios than those quoted in Table C1 apply to waves in shallow waters and in cases where the sea elevation process is not narrow-banded.

It is common to base the estimation of $H_{\text{max}}$ on the results for the mode rather than on the results for the mean.

Table C1 is valid for $H_S/d < 0.2$, where $d$ denotes water depth.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

### 308 In shallow waters, the wave heights will be limited by the water depth. Unless data indicate otherwise, the maximum wave height can be taken as 78% of the water depth. The Rayleigh distribution of the wave heights will become distorted in the upper tail to approach this limit asymptotically. Use of the unmodified Rayleigh distribution for representation of the distribution of wave heights in shallow waters may therefore be on the conservative side.

### 309 In shallow waters with constant seabed slope, the Battjes and Groenendijk distribution can be used to represent the probability distribution of the arbitrary wave height $H$ conditional on the significant wave height $H_S$. It is a requirement for this use of the Battjes and Groenendijk distribution that it is validated by measured site-specific wave data. The Battjes and Groenendijk distribution is a composite Weibull distribution whose cumulative distribution function reads

$$F_{H_{\text{max}}} (h) = \begin{cases} 1 - \exp\left(-\left(\frac{h}{h_1}\right)^{\alpha}\right) & \text{for } h \leq h_1 \\ 1 - \exp\left(-\left(\frac{h-h_1}{h_2}\right)^{\alpha}\right) & \text{for } h > h_1 \end{cases}$$

in which the transition wave height $h_T$ is defined as

$$h_T = (0.35 + 5.8 \cdot \tan \alpha) \cdot d$$

where $\alpha$ is the slope angle of the sea floor and $d$ is the water depth. The parameters $h_1$ and $h_2$ are functions of the transition wave height $h_T$ and of the root mean square $H_{\text{RMS}}$ of the wave heights. The root mean square $H_{\text{RMS}}$ is calculated from the significant wave height $H_S$ and the water depth $d$ as

$$H_{\text{RMS}} = 0.6725H_S + 0.2025H_T^2/d$$

and the parameters $h_1$ and $h_2$ can be found from the following approximate expressions, valid for $0.05H_{\text{RMS}} < h_T < 3H_{\text{RMS}}$.

$$h_1 = 0.0835 \left( \frac{h_T}{H_{\text{RMS}}} \right)^3 - 0.583 \left( \frac{h_T}{H_{\text{RMS}}} \right)^2 + 1.3339 \left( \frac{h_T}{H_{\text{RMS}}} \right)$$

$$h_2 = 1.06 - 0.01532 \left( \frac{h_T}{H_{\text{RMS}}} \right)^2 + 0.083259 \left( \frac{h_T}{H_{\text{RMS}}} \right)^3 - 0.01928 \left( \frac{h_T}{H_{\text{RMS}}} \right)^4$$

The Battjes and Groenendijk distribution is not defined for $h_T > 3H_{\text{RMS}}$.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

### 310 The long-term probability distribution of the arbitrary wave height $H$ can be found by integration over all significant wave heights

$$F_H(h) = \frac{1}{V_h} \int_0^H \int_0^{v_h} v_s(h, t) \cdot f_{H_{\text{max}}}(h, t) \cdot f_{H|H_S}(h, t)dtdh$$

where $V_h = \int_0^H \int_0^{v_h} v_s(h, t) \cdot f_{H_{\text{max}}}(h, t)\cdot f_{H|H_S}(h, t)dtdh$ in which $f_{H_{\text{max}}}(h, t)$ is the joint probability density of the significant wave height $H_S$ and the peak period $T_P$ and $v_s(h, t)$ is the zero-upcrossing rate of the sea elevation process for given combination of $H_S$ and $T_P$. $F_{H_{\text{max}}}(h)$ denotes the short-term cumulative distribution function for the wave height $H$ conditioned on $H_S$ and $T_P$.

### 311 When $F_H(h)$ denotes the distribution of the arbitrary wave height $H$, the distribution of the annual maximum wave height $H_{\text{max}}$ can be taken as

$$F_{H_{\text{max,year}}}(h) = (F_H(h))^{N_W}$$
where $N_W$ is the number of wave heights in one year.

### 312

Unless data indicate otherwise, the wave crest height $H_C$ can be assumed to be 0.65 times the associated arbitrary wave height $H$.

### 313

The wave height with return period $T_R$ in units of years is defined as the $(1-1/T_R)$ quantile in the distribution of the annual maximum wave height, i.e. it is the wave height whose probability of exceedance in one year is $1/T_R$. It is denoted $H_{T_R}$ and is expressed as

$$H_{T_R} = F_{H_{max,1year}}^{-1}(1 - 1/T_R)$$

in which $T_R > 1$ year.

The wave height with return period one year is defined as the mode of the distribution function of the annual maximum wave height.

### Guidance note:

The 50-year wave height becomes $H_{50} = F_{H_{max,1year}}^{-1}(0.98)$ and the 100-year wave height becomes $H_{100} = F_{H_{max,1year}}^{-1}(0.99)$. Note that these values, calculated as specified, are to be considered as central estimates of the respective wave heights when the underlying distribution function $F_{H_{max}}$ is determined from limited data and is encumbered with statistical uncertainty.

Note also that the 50-year wave height $H_{50}$ is always greater than the maximum wave height $H_{max}$ in the 3-hour sea state whose return period is 50 years and whose significant wave height is denoted $H_{S,50}$. This implies that in deep waters $H_{50}$ will take on a value greater than $H_{max} = 1.86H_{S,50}$. Values of $H_{50}$ equal to about 2.0 times $H_{S,50}$ are not uncommon in deep waters.

### 314

Directionalities of waves shall be considered for determination of wave height distributions and wave heights with specified return periods when such directionalities have an impact on the design of a wind turbine structure.

### C 400 Reference sea states and reference wave heights

#### 401

For use in load combinations for design, a number of reference sea states and reference wave heights are defined.

#### 402

The **Normal Sea State (NSS)** is characterized by a significant wave height, a peak period and a wave direction. It is associated with a concurrent mean wind speed. The significant wave height $H_{S,NSS}$ of the normal sea state is defined as the expected value of the significant wave height conditioned on the concurrent 10-minute mean wind speed. The normal sea state is used for calculation of ultimate loads and fatigue loads. For fatigue load calculations a series of normal sea states have to be considered, associated with different mean wind speeds. It must be ensured that the number and resolution of these normal sea states are sufficient to predict the fatigue damage associated with the full long-term distribution of metocean parameters. The range of peak periods $T_p$ appropriate to each significant wave height shall be considered. Design calculations shall be based on values of the peak period which result in the highest loads or load effects in the structure.

#### 403

The **Normal Wave Height (NWH)** $H_{NWH}$ is defined as the expected value of the significant wave height conditioned on the concurrent 10-minute mean wind speed, i.e. $H_{NWH} = H_{S,NSS}$. The range of wave periods $T$ appropriate to the normal wave height shall be considered. Design calculations shall be based on values of the wave period within this range that result in the highest loads or load effects in the structure.

### Guidance note:

In deep waters, the wave periods $T$ to be used with $H_{NWH}$ may be assumed to be within the range given by

$$1.1\sqrt{H_{S,NWH}(U_{10})}/g \leq T \leq 14.3\sqrt{H_{S,NWH}(U_{10})}/g$$

### 404

The **Severe Sea State (SSS)** is characterized by a significant wave height, a peak period and a wave direction. It is associated with a concurrent mean wind speed. The significant wave height of the severe sea state $H_{S,SSS}$ is defined by extrapolation of appropriate site-specific metocean data such that the load effect from the combination of the significant wave height $H_{S,SSS}$ and the 10-minute mean wind speed $U_{10}$ has a return period of 50 years. The SSS model is used in combination with normal wind conditions for calculation of the ultimate loading of an offshore wind turbine during power production. The SSS model is used to associate a severe sea state with each mean wind speed in the range corresponding to power production. For all 10-minute mean wind speeds $U_{10}$ during power production, the unconditional extreme significant wave height, $H_{S,SSS}$, with a return period of 50 years may be used as a conservative estimate for $H_{S,SSS}(U_{10})$. Further guidance regarding estimation of $H_{S,SSS}$ is provided in 4703. The range of peak periods $T_p$ appropriate to each significant wave height shall be considered. Design calculations shall be based on values of the peak period which result in the highest loads or load effects in the structure.

### 405

The **Severe Wave Height (SWH)** $H_{SWH}$ is associated with a concurrent mean wind speed and is defined by extrapolation of appropriate site-specific metocean data such that the load effect from the combination of the severe wave height $H_{SWH}$ and the 10-minute mean wind speed $U_{10}$ has a return period of 50 years. The SWH model is used in combination with normal wind conditions for calculation of the ultimate loading of an offshore wind turbine during power production. The SWH model is used to associate a severe wave height with each mean wind speed in the range corresponding to power production. For all 10-minute mean wind speeds $U_{10}$ during power production, the unconditional extreme wave height, $H_{SWH}$, with a return period of 50 years may be used as a conservative estimate for $H_{SWH}(U_{10})$. The range of wave periods $T_p$ appropriate to the severe wave height shall be considered. Design calculations shall be based on values of the wave period within this range that result in the highest loads or load effects in the structure.

### Guidance note:

In deep waters, the wave periods $T$ to be used with $H_{SWH}$ may be assumed to be within the range given by

$$1.1\sqrt{H_{S,SWH}(U_{10})}/g \leq T \leq 14.3\sqrt{H_{S,SWH}(U_{10})}/g$$

### 406

The **Extreme Sea State (ESS)** is characterized by a significant wave height, a peak period and a wave direction. The significant wave height $H_{S,ESS}$ is the unconditional significant wave height with a specified return period, determined from the distribution of the annual maximum significant wave height as outlined in 306. The Extreme Sea State is used for return periods of 50 years and 1 year, and the corresponding significant wave heights are denoted $H_{S,ESS,50}$ and $H_{S,ESS,1}$, respectively. The range of peak periods $T_p$ appropriate to each of these significant wave heights shall be considered. Design calculations shall be based on values of the peak period which result in the highest loads or load effects in the structure.

### 407

The **Extreme Wave Height (EWH)** $H_{EWH}$ is a wave height with a specified return period. It can be determined from the distribution of the annual maximum wave height as outlined in 313. In deep waters, it can be estimated based on the significant wave height $H_{S,ESS}$ with the relevant return period as outlined in 307. The Extreme Wave Height is used for return periods of 50 years and 1 year, and the corresponding wave
heights are denoted $H_{50\text{-yr}}$ and $H_{1\text{-yr}}$, respectively. The range of wave periods $T$ appropriate to the severe wave height shall be considered. Design calculations shall be based on values of the wave period within this range that result in the highest loads or load effects in the structure.

**Guidance note:**
In deep waters, the wave periods $T$ to be used with $H_{EWH}$ may be assumed to be within the range given by

$$11.1 \sqrt{H_{S,5\text{yr}}(U_{10})/g} \leq T \leq 14.3 \sqrt{H_{S,5\text{yr}}(U_{10})/g}$$

---end of Guidance note---

408 The Reduced Wave Height ($RWH$) $H_{RWH}$ is a companion wave height to be used in combination with the extreme wind speed ($EWS$) for definition of an extreme event with a specified return period. The reduced wave height can be expressed as a fraction of the extreme wave height, $H_{RWH} = \psi \cdot H_{EWH}$, where $\psi < 1$. The Reduced Wave Height is used for definition of events with return periods of 50 years and 1 year, and the corresponding reduced wave heights are denoted $H_{RWH,50\text{-yr}}$ and $H_{RWH,1\text{-yr}}$. respectively.

**Guidance note:**
It is practice for offshore structures to apply $\psi = H_{5\text{-yr}}/H_{50\text{-yr}}$, where $H_{5\text{-yr}}$ and $H_{50\text{-yr}}$ denote the individual wave heights with 5- and 50-year return period, respectively. The shallower the water depth, the larger is usually the value of $\psi$.

---end of Guidance note---

409 The wave period $T$ associated with the wave heights in 403, 405, 407 and 408 has a depth-dependent lower limit derived from wave breaking considerations,

$$T > \sqrt{\frac{34.5}{g}} \cdot \frac{d}{\tanh (\frac{H}{0.78d})}$$

where $H$ is the wave height, $d$ is the water depth and $g$ is the acceleration of gravity.

**C 500 Wave theories and wave kinematics**

501 The kinematics of regular waves may be represented by analytical or numerical wave theories, which are listed below:

- linear wave theory (Airy theory) for small-amplitude deep water waves; by this theory the wave profile is represented by a sine function
- Stokes wave theories for high waves
- stream function theory, based on numerical methods and accurately representing the wave kinematics over a broad range of water depths
- Boussinesq higher-order theory for shallow water waves
- solitary wave theory for waves in particularly shallow water.

502 Three wave parameters determine which wave theory to apply in a specific problem. These are the wave height $H$, the wave period $T$ and the water depth $d$. These parameters are used to define three non-dimensional parameters that determine ranges of validity of different wave theories,

- Wave steepness parameter: $S = \frac{2\pi H}{gT^2} = \frac{H}{\lambda_0}$
- Shallow water parameter: $\mu = \frac{2\pi d}{gT^2} = \frac{d}{\lambda_0}$
- Ursell parameter: $U_r = \frac{H}{k^2 d^3} = \frac{1}{4\pi^2 \mu^3}$

where $\lambda_0$ and $\kappa_0$ are the linear deepwater wavelength and wave number corresponding to wave period $T$. The ranges of application of the different wave theories are given in Table C2.

<table>
<thead>
<tr>
<th>Table C2 Ranges of application of regular wave theories</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Theory</strong></td>
</tr>
<tr>
<td>Linear (Airy) wave</td>
</tr>
<tr>
<td>2nd order Stokes wave</td>
</tr>
<tr>
<td>5th order Stokes wave</td>
</tr>
<tr>
<td>Cnoidal theory</td>
</tr>
</tbody>
</table>

Figure 7 shows the ranges of validity for different wave theories.
503  Linear wave theory is the simplest wave theory and is obtained by taking the wave height to be much smaller than both the wavelength and the water depth, or equivalently

\[ S << 1 \quad ; \quad U_t << 1 \]

This theory is referred to as small amplitude wave theory, linear wave theory, sinusoidal wave theory or as Airy theory. For regular linear waves the wave crest height is equal to the wave trough height \( A_H \) and denoted the wave amplitude \( A \), hence \( H = 2A \).

The surface elevation is given by

\[ \eta(x,y,t) = \frac{H}{2} \cos \Theta \]

where \( \Theta = k(x \cos \beta + y \sin \beta - ct) \) and \( \beta \) is the direction of propagation, measured from the positive x-axis.

The dispersion relation gives the relationship between wave period \( T \) and wavelength \( \lambda \). For waves in waters with finite water depth \( d \) the dispersion relation is given by the transcendental equation

\[ \lambda = \frac{g T^2}{2 \pi} \tanh \left( \frac{2 \pi d}{\lambda} \right) \]

in which \( g \) denotes the acceleration of gravity. A good approximation to the wavelength \( \lambda \) as a function of the wave period \( T \) is given by

\[ \lambda = T (g d)^{1/2} \left( \frac{f(\sigma)}{1 + \sigma f(\sigma)} \right)^{1/2} \]

where

\[ f(\sigma) = 1 + \sum_{n=1}^\infty \alpha_n \sigma^n \]

and

\[ \sigma = (4 \pi^2 d / g T^2) \]

\( \alpha_1 = 0.666, \alpha_2 = 0.445, \alpha_3 = -0.105, \alpha_4 = 0.272. \)

504  Stokes wave theory implies the Stokes wave expansion, which is an expansion of the surface elevation in powers of the linear wave height \( H \). A Stokes wave expansion can be shown to be formally valid for

\[ S << 1 \quad ; \quad U_t << 1 \]

A first-order Stokes wave is identical to a linear wave, or Airy wave. A second-order Stokes wave is a reasonably accurate approximation when \( S < 0.04 \) and \( U_t < 0.65 \).

The surface elevation profile for a regular second-order Stokes wave is given by

\[ \eta = \frac{H}{2} \cos \Theta + \frac{\pi H^2}{8 \lambda} \cosh kd \left[ 2 + \cosh 2kd \right] \cos 2 \Theta \]

where \( \Theta = k(x \cos \beta + y \sin \beta - ct) \). Second-order and higher order Stokes waves are asymmetric with \( A_C > A_T \) and steeper and troughs are wider than for Airy waves.

The linear dispersion relation holds for second-order Stokes waves, hence the phase velocity \( c \) and the wavelength \( \lambda \) remain independent of wave height.

To third order, the phase velocity depends on wave height according to

\[ c^2 = \frac{g}{k} \tanh (kd) \left[ 1 + \frac{kH}{2} \left( \frac{9 - 8 \cosh^2 (kd) + 8 \cosh (kd)}{8 \sinh^2 (kd)} \right) \right] \]

The wave height is limited by breaking. The maximum steepness is

\[ S_{\text{max}} = \frac{H}{\lambda} = 0.142 \tanh \left( \frac{2 \pi d}{\lambda} \right) \]

where \( \lambda \) is the wavelength corresponding to water depth \( d \).

For deep water the breaking wave limit is approximated by \( S_{\text{max}} = 1/7 \). Use of second order Stokes waves is limited by the steepness criterion

\[ kH = 0.924 \sinh \left( \frac{kd}{\sqrt{1 + 8 \cosh^2 (kd)}} \right) \]

For regular steep waves \( S < S_{\text{max}} \) and \( U_t < 0.65 \) Stokes fifth order wave theory applies.

Stokes wave theory is not applicable for very shallow water where cnoidal wave theory or “Stream Function” wave theory should be used.

505  Cnoidal wave theory defines a wave which is a periodic wave with sharp crests separated by wide troughs. The range of validity of cnoidal wave theory is

\[ \mu < 0.125 \quad \text{and} \quad U_t > 0.65 \]

The surface profile of cnoidal waves of wave height \( H \) and period \( T \) in water depth \( d \) is given by

\[ \eta(x,t) = 16 d^{1/4} \left[ K(k) \left( E(k) - E(k) \right) \right] + 1 - \frac{H}{d} + H \sin \left( 2 K(k) \left( \frac{x}{\lambda} - \frac{t}{T} \right), k \right) \]

where \( K, E \) are the complete elliptic integrals of the first and second kind respectively, \( cn \) is the Jacobian elliptic function and \( k \) is a parameter determined implicitly as a function of \( H \) and \( T \) by the formulae

\[ T(k) = \frac{\lambda(k)}{c(k)} \]

\[ \lambda(k) = \left( \frac{16 d^{1/4}}{3 H} \right)^{1/2} k K(k) \]

\[ c(k) = (g d)^{1/2} \left[ 1 + \frac{H}{d} \left( \frac{1}{2} - \frac{E(k)}{K(k)} \right) \right] \]

506  The “Stream Function” wave theory is a purely numerical procedure for approximating a given wave profile and has a broader range of validity than the wave theories in 503 through 505.

A stream function wave solution has the general form

\[ \Psi(x,z) = c z + \sum_{n=1}^{N} X(n) \sinh nk(z + d) \cos nkx \]

where \( c \) is the wave celerity and \( N \) is the order of the wave theory. The required order, \( N \), of the stream function theory, ranging from 1 to 10, is determined by the wave parameters \( S \) and \( \mu \). The closer to the breaking wave height, the more terms are required in order to give an accurate representation of the wave. Figure 8 shows the required order \( N \) of stream function wave theory such that errors in maximum velocity and acceleration are less than one percent.
C 600  Breaking waves

601 Wave breaking may take place as a result of shoaling and limited water depth. Such breaking may take place either before the waves arrive at the site or when they have arrived at the site. In both cases, the wave breaking implies that a depth-dependent limitation is imposed on the waves at the site. This depth dependency shall be taken into account when wave heights for use in design are to be determined. For this determination, the water depth corresponding to the maximum water level on the site shall be assumed. The breaking criterion is identified in Figure 1. Breaking waves are irregular waves, for which the kinematics deviate from those implied by the wave theories referenced in 503 through 506. The kinematics of breaking waves depends on the type of breaking.

602 There are three types of breaking waves depending on the wave steepness and the slope of the seabed:

— surging breaker
— plunging breaker
— spilling breaker.

Figure 9 indicates which type of breaking wave can be expected as a function of the slope of the seabed and as a function of the wave period T and the wave height $H_0$ in deep waters.

D 100  Current parameters

101 The current consists of a wind-generated current and a tidal current, and a density current when relevant.

102 The current is represented by the wind-generated current velocity $v_{\text{wind}0}$ at the still water level and the tidal current velocity $v_{\text{tide}0}$ at the still water level.

103 Other current components than wind-generated currents, tidal currents and density currents may exist. Examples of such current components are

— subsurface currents generated by storm surge and atmospheric pressure variations
— near-shore, wave-induced surf currents running parallel to the coast.

D 200  Current data

201 Current statistics are to be used as a basis for representation of the long-term and short-term current conditions. Empirical statistical data used as a basis for design must cover a sufficiently long period of time.

Guidance note:
Current data obtained on site are to be preferred over current data observed at an adjacent location. Measured current data are to be preferred over visually observed current data. Continuous records of data are to be preferred over records with gaps. Longer periods of observation are to be preferred over shorter periods.

202 The variation of the current with the water depth shall be considered when relevant.

203 In regions where bottom material is likely to erode, special studies of current conditions near the sea bottom may be required.

D 300  Current modelling

301 When detailed field measurements are not available, the variation in current velocity with depth may be taken as

\[
\frac{z}{h_0} = \left(\frac{h - z}{h_0}\right)^{1/7}
\]

for $z \leq 0$

and

\[
\frac{z}{h_0} = \left(\frac{h_0 - z}{h_0}\right)^{1/7}
\]

for $-h_0 \leq z \leq 0$

in which

$\frac{z}{h_0}$ = total current velocity at level $z$
$\frac{z}{h_0}$ = distance from still water level, positive upwards
$\frac{z}{h_0}$ = tidal current at still water level
$\frac{z}{h_0}$ = wind-generated current at still water level
$\frac{z}{h_0}$ = water depth from still water level (taken as positive)
$\frac{z}{h_0}$ = reference depth for wind-generated current; $h_0 = 50$ m.

302 The variation in current profile with variation in water depth due to wave action shall be accounted for. In such cases, the current profile may be stretched or compressed vertically, such that the current velocity at any proportion of the instantaneous depth is kept constant. By this approach, the surface current component remains constant, regardless of the sea...
elevation during the wave action.

303 Unless data indicate otherwise, the wind-generated current at still water level may be estimated as

\[ v_{0.10} = 0.01 \cdot U_0 \]

where

\[ U_0 = \text{1-hour mean wind speed at 10 m height} \]

E. Water Level

E 100 Water level parameters

101 The water level consists of a mean water level in conjunction with tidal water and a wind- and pressure-induced storm surge. The tidal range is defined as the range between the highest astronomical tide (HAT) and the lowest astronomical tide (LAT), see Figure 10.

Figure 10
Definition of water levels

---end---of---Guidance---note---

201 Water level statistics are to be used as a basis for representation of the long-term and short-term water level conditions. Empirical statistical data used as a basis for design must cover a sufficiently long period of time.

Guidance note:
Water level data obtained on site are to be preferred over water level data observed at an adjacent location. Measured water level data are to be preferred over visually observed water level data. Continuous records of data are to be preferred over records with gaps. Longer periods of observation are to be preferred over shorter periods.

---end---of---Guidance---note---

202 Water level and wind are correlated, because the water level has a wind-generated component. The correlation between water level data and wind data shall be accounted for in design.

Guidance note:
Simultaneous observations of water level and wind data in terms of simultaneous values of water level and \( U_{10} \) should be obtained.

---end---of---Guidance---note---

E 300 Water level modelling

301 For determination of the water level for calculation of loads and load effects, both tidal water and pressure- and wind-induced storm surge shall be taken into account.

Guidance note:
Water level conditions are of particular importance for prediction of depth-limited wave heights.

---end---of---Guidance---note---

F. Ice

F 100 Sea ice

101 When the wind turbine structure is to be located in an area where ice may develop or where ice may drift, ice conditions shall be properly considered.

102 Relevant statistical data for the following sea ice conditions and properties shall be considered:
- geometry and nature of ice
- concentration and distribution of ice
- type of ice (ice floes, ice ridges, rafted ice etc.)
- mechanical properties of ice (compressive strength \( r_u \), bending strength \( r_f \))
- velocity and direction of drifting ice
- thickness of ice
- probability of encountering icebergs.

---end---of---Guidance---note---

F 200 Snow and ice accumulation

201 Ice accretion from sea spray, snow and rain and air humidity shall be considered wherever relevant.

202 Snow and ice loads due to snow and ice accumulation may be reduced or neglected if a snow and ice removal procedure is established.

203 Possible increases of cross-sectional areas and changes in surface roughness caused by icing shall be considered wherever relevant, when wind loads and hydrodynamic loads are to be determined.

204 For buoyant structures, the possibility of uneven distribution of snow and ice accretion shall be considered.

---end---of---Guidance---note---

F 300 Ice modelling

301 The ice thickness forms an important parameter for calculation of ice loads. The ice thickness shall be based on local ice data, e.g. as available in an ice atlas or as derived from frost index data.

302 As a basis for design against ice loads, the frost index \( K \) may be used. The frost index for a location is defined as the absolute value of the sum of the daily mean temperature over all days whose mean temperature is less than 0 \( ^\circ \)C in one year. The frost index \( K \) exhibits variability from year to year and can be represented by its probability distribution.

Guidance note:
Unless data indicate otherwise, the frost index may be represented by a three-parameter Weibull distribution,

\[ F_K(k) = 1 - \exp\left(-\left(\frac{k-b}{a}\right)^\beta\right) \]

---end---of---Guidance---note---

303 The frost index with return period \( T_R \) in units of years is defined as the \((1-1/T_R)\) quantile in the distribution of the frost index, i.e. it is the frost index whose probability of exceedance in one year is \( 1/T_R \). It is denoted \( K_{T_R} \) and is expressed as

\[ K_{T_R} = F_K^{-1}\left(1 - \frac{1}{T_R}\right) \]

304 The ice thickness \( t \) at the end of a frost period can be estimated by

\[ t = 0.032 \sqrt{0.9 K - 50} \]

where \( t \) is in units of metres and \( K \) is the frost index in units of degree-days.

305 In near-coastal waters and in sheltered waters, such as in lakes and archipelagos, the ice sheet is normally not moving after having grown to some limiting thickness, \( t_{\text{limit}} \). The lim-
iting thickness can therefore be used to define extreme thickness events for moving ice in such waters. Unless data indicate otherwise, the limiting thickness $t_{lim}$ can be taken as the long-term mean value of the annual maximum ice thickness. No such limiting thickness is associated with moving ice in open sea, for which larger thicknesses can therefore be expected in the extreme thickness events.

**Guidance note:**
The long-term mean value of the annual maximum ice thickness may be interpreted as a measure of the ice thickness associated with a "normal winter".

---end---of---Guidance---note---

**306** The compression strength $r_c$, the bending strength $r_f$ and the thickness of the ice may be expressed as functions of the frost index or, alternatively, in terms of their respective probability distributions. Other location-dependent parameters which may need to be considered are the floe size and the drift speed of floes.

**307** Unless data indicate otherwise, the following general values of ice parameters apply, regardless of location:

- **Density**: 900 kg/m³
- **Unit weight**: 8.84 kN/m³
- **Modulus of elasticity**: 2 GPa
- **Poisson's ratio**: 0.33
- **Ice-ice frictional coefficient**: 0.1
- **Ice-concrete dynamic frictional coefficient**: 0.2
- **Ice-steel dynamic frictional coefficient**: 0.1

---end---of---Guidance---note---

**G. Soil Investigations and Geotechnical Data**

**G 100  Soil investigations**

**101** The soil investigations shall provide all necessary soil data for a detailed design. The soil investigations may be divided into geological studies, geophysical surveys and geotechnical soil investigations.

**Guidance note:**
A geological study, based on the geological history, can form a basis for selection of methods and extent of the geotechnical soil investigations. A geophysical survey, based on shallow seismic, can be combined with the results from a geotechnical soil investigation to establish information about soil stratification and seabed topography for an extended area such as the area covered by a wind farm. A geotechnical soil investigation consists of in-situ testing of soil and of soil sampling for laboratory testing. For multiple foundations such as in a wind farm, the soil stratigraphy and range of soil strength properties shall be assessed within each group of foundations or per foundation location, as relevant.

---end---of---Guidance---note---

**102** The extent of soil investigations and the choice of soil investigation methods shall take into account the type, size and importance of the wind turbine structure, the complexity of soil and seabed conditions and the actual type of soil deposits. The area to be covered by soil investigations shall account for positioning and installation tolerances.

**Guidance note:**
The line spacing of the seismic survey at the selected location should be sufficiently small to detect all soil strata of significance for the design and installation of the wind turbine structures. Special concern should be given to the possibility of buried erosion channels with soft infill material.

---end---of---Guidance---note---

**103** For multiple foundations such as in a wind farm, the soil stratigraphy and range of soil strength properties shall be assessed within each group of foundations or per foundation location, as relevant.

**Guidance note:**
Whether the soil stratigraphy and range of soil strength properties shall be assessed within each group of foundations or per foundation location is much a function of the degree to which the soil deposit can be considered as homogeneous. Thus, when very homogeneous soil conditions prevail, the group of foundations to be covered by such a common assessment may consist of all the foundations within the entire area of a wind farm or it may consist of all the foundations within a sub-area of a wind farm. Such sub-areas are typically defined when groups of wind turbines within the wind farm are separated by kilometre-wide straits or traffic corridors. When complex or non-homogeneous soil conditions prevail, it may be necessary to limit common assessments of the soil stratigraphy and soil strength properties to cover only a few close foundations, and in the ultimate case to carry out individual assessments for individual foundations.

---end---of---Guidance---note---

**104** Soil investigations shall provide relevant information about the soil to a depth below which possible existence of weak formations will not influence the safety or performance of the wind turbine and its support structure and foundation.

**Guidance note:**
For design of pile foundations against lateral loads, a combination of CPTs and soil borings with sampling should be carried out to sufficient depth. For slender and flexible piles in jacket type foundations, a depth of about 10 pile diameters suffices. For less flexible monopiles with larger diameters, a depth equal to the pile penetration plus half a pile diameter suffices. For design of piles against axial loads, at least one CPT and one nearby boring should be carried out to the anticipated penetration depth of the pile plus a zone of influence. If potential end bearing layers or other dense layers, which may create driving problems, are found this scope should be increased.

For design of gravity base foundations, the soil investigations should extend at least to the depth of any critical shear surface. Further, all soil layers influenced by the wind turbine structure from a settlement point of view should be thoroughly investigated. In seismic areas, it may be necessary to obtain information about the shear modulus of the soil to large depths.

---end---of---Guidance---note---

**105** Soil investigations are normally to comprise the following types of investigation:

- site geology survey
- topography survey of the seabed
- geophysical investigations for correlation with soil borings and in-situ testing
- soil sampling with subsequent laboratory testing
- in-situ tests, e.g. cone penetration tests (CPT).

**Guidance note:**
The extent and contents of a soil investigation program are no straight-forward issue and will depend on the foundation type. The guidance given in this guidance note therefore forms recommendations of a general nature which the designer, either on his own initiative or in cooperation with the classification society, may elaborate further on.

An experienced geotechnical engineer who is familiar with the considered foundation concepts and who represents the owner or developer should be present during the soil investigations on the site. Depending on the findings during the soil investigations, actions may then be taken, as relevant, to change the soil investigation program during its execution. This may include suggestions for increased depths of planned soil borings, suggestions for additional soil borings, and suggestions for changed positions of soil borings.

When non-homogeneous soil deposits are encountered or when difficult or weak soils are identified locally, it may be necessary to carry out more soil borings and CPTs than the tentative minimum recommended below.
For solitary wind turbine structures, one soil boring to sufficient depth for recovery of soil samples for laboratory testing is recommended as a minimum.

For wind turbine structures in a wind farm, a tentative minimum soil investigation program may contain one CPT per foundation in combination with one soil boring to sufficient depth in each corner of the area covered by the wind farm for recovery of soil samples for laboratory testing. An additional soil boring in the middle of the area will provide additional information about possible non-homogeneities over the area.

For cable routes, the soil investigations should be sufficiently detailed to identify the soils of the surface deposits to the planned depth of the cables along the routes. Seabed samples should be taken for evaluation of scour potential.

---end-of-Guidance-note---

106 For further guidance and industry practice regarding requirements to scope, execution and reporting of offshore soil investigations, and to equipment, reference is made to DNV Classification Notes No. 30.4, NORSOK N-004 (App. K) and NORSOK G-001. National and international standards may be considered from case to case, if relevant.

107 The geotechnical investigation at the actual site comprising a combination of sampling with subsequent laboratory testing and in situ testing shall provide the following types of geotechnical data for all important layers:

- data for soil classification and description
- shear strength and deformation properties, as required for the type of analysis to be carried out
- in-situ stress conditions.

The soil parameters provided shall cover the scope required for a detailed and complete foundation design, including the lateral extent of significant soil layers, and the lateral variation of soil properties in these layers.

108 The laboratory test program for determination of soil strength and deformation properties shall cover a set of different types of tests and a number of tests of each type, which will suffice to carry out a detailed foundation design.

Guidance note:

For mineral soils, such as sand and clay, direct simple shear tests and triaxial tests are relevant types of tests for determination of strength properties.

For fibrous peats, neither direct simple shear tests nor triaxial tests are recommended for determination of strength properties. Shear strength properties of low-humified peat can be determined by ring shear tests.

---end-of-Guidance-note---

H. Other Site Conditions

H 100 Seismicity

101 The level of seismic activity of the area where the wind turbine structure is to be installed shall be assessed on the basis of previous record of earthquake activity as expressed in terms of frequency of occurrence and magnitude.

102 For areas where detailed information on seismic activity is available, the seismicity of the area may be determined from such information.

103 For areas where detailed information on seismic activity is not available, the seismicity is to be determined on the basis of detailed investigations, including a study of the geological history and the seismic events of the region.

104 If the area is determined to be seismically active and the wind turbine structure will be affected by an earthquake, an evaluation shall be made of the regional and local geology in order to determine the location and alignment of faults, epicentral and focal distances, the source mechanism for energy release and the source-to-site attenuation characteristics. Local soil conditions shall be taken into account to the extent that they may affect the ground motion. The seismic design, including the development of the seismic design criteria for the site, shall be in accordance with recognised industry practice.

105 The potential for earthquake-induced sea waves, also known as tsunamis, shall be assessed as part of the seismicity assessment.

106 For details of seismic design criteria, reference is made to ISO 19901-2.

H 200 Salinity

201 The salinity of the seawater shall be addressed with a view to its influence with respect to corrosion.

H 300 Temperature

301 Extreme values of high and low temperatures are to be expressed in terms of the most probable highest and lowest values, respectively, with their corresponding return periods.

302 Both air and seawater temperatures are to be considered when describing the temperature environment.

H 400 Marine growth

401 The plant, animal and bacteria life on the site causes marine growth on structural components in the water and in the splash zone. The potential for marine growth shall be addressed. Marine growth adds weight to a structural component and influences the geometry and the surface texture of the component. The marine growth may hence influence the hydrodynamic loads, the dynamic response, the accessibility and the corrosion rate of the component.

Guidance note:

Marine growth can broadly be divided into hard growth and soft growth. Hard growth generally consists of animal growth such as mussels, barnacles and tubeworms, whereas soft growth consists of organisms such as hydroids, sea anemones and corals. Marine growth may also appear in terms of seaweeds and kelps. Marine organisms generally colonise a structure soon after installation, but the growth tapers off after a few years.

The thickness of marine growth depend on the position of the structural component relative to the sea level, the orientation of the component relative to the sea level and relative to the dominant current, the age of the component, and the maintenance strategy for the component.

Marine growth also depends on other site conditions such as salinity, oxygen content, pH value, current and temperature. The corrisive environment is normally modified by marine growth in the upper submerged zone and in the lower part of the splash zone of the structural component. Depending on the type of marine growth and on other local conditions, the net effect may be either an enhancement or a retardation of the corrosion rate. Marine growth may also interfere with systems for corrosion protection, such as coating and cathodic protection.

---end-of-Guidance-note---

H 500 Air density

501 Air density shall be addressed since it affects the structural design through wind loading.

H 600 Ship traffic

601 Risk associated with possible ship collisions shall be addressed as part of the basis for design of support structures for offshore wind turbines.

602 For service vessel collisions, the risk can be managed by designing the support structure against relevant service vessel impacts. For this purpose the limit state shall be considered as a ULS. The service vessel designs and the impact velocities to be considered are normally specified in the design basis for structural design.
H 700  Disposed matters
701  The presence of obstacles and wrecks within the area of installation shall be mapped.

H 800  Pipelines and cables
801  The presence of pipelines and cables within the area of installation shall be mapped.
SECTION 4
LOADS AND LOAD EFFECTS

A. Introduction

A 100 General

101 The requirements in this section define and specify load components and load combinations to be considered in the overall strength analysis as well as design pressures applicable in formulae for local design.

102 It is a prerequisite that the wind turbine and support structure as a minimum meet the requirements to loads given in IEC61400-1 for site-specific wind conditions.

B. Basis for Selection of Characteristic Loads

B 100 General

101 Unless specific exceptions apply, as documented within this standard, the basis for selection of characteristic loads or characteristic load effects specified in 102 and 103 shall apply in the temporary and operational design conditions, respectively.

Guidance note:
Temporary design conditions cover design conditions during transport, assembly, maintenance, repair and decommissioning of the wind turbine structure.
Operational design conditions cover design conditions in the permanent phase which includes steady conditions such as power production, idling and stand-still as well as transient conditions associated with start-up, shutdown, yawing and faults.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

102 For the temporary design conditions, the characteristic values shall be based on specified values, which shall be selected dependent on the measures taken to achieve the required safety level. The values shall be specified with due attention to the actual location, the season of the year, the weather forecast and the consequences of failure. For design conditions during transport and installation, reference is made to DNV Rules for Planning and Execution of Marine Operations.

103 For the operational design conditions, the basis for selection of characteristic loads and load effects specified in Table B1 refers to statistical terms whose definitions are given in Table B2.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

104 Characteristic values of environmental loads or load effects, which are specified as the 98% quantile in the distribution of the annual maximum of the load or load effect, shall be estimated by their central estimates.

C. Permanent Loads (G)

C 100 General

101 Permanent loads are loads that will not vary in magnitude, position or direction during the period considered. Examples are:

— mass of structure
— mass of permanent ballast and equipment
— external and internal hydrostatic pressure of a permanent nature
— reaction to the above, e.g. articulated tower base reaction.

102 The characteristic value of a permanent load is defined as the expected value based on accurate data of the unit, mass of the material and the volume in question.

D. Variable Functional Loads (Q)

D 100 General

101 Variable functional loads are loads which may vary in magnitude, position and direction during the period under consideration, and which are related to operations and normal use of the installation. Examples are:

— personnel
— crane operational loads
— ship impacts
D 300 Ship impacts and collisions

301 Impacts from approaching ships shall be considered as variable functional loads. Analyses of such impacts in design shall be carried out as ULS analyses. The impact analyses shall include associated environmental loads from wind, waves and current. The added water mass contributes to the kinetic energy of the ship and has to be taken into account.

302 For design against ship impact in the ULS, the load shall be taken as the largest unintended impact load in normal service conditions. It is a requirement that the support structure and the foundation do not suffer from damage. Secondary structural parts such as boat landings and ladders shall not suffer from damage leading to loss of their respective functions.

Guidance note:
A risk analysis forms the backbone of a ship impact analysis. The largest unintended impact load is part of the results from the risk analysis.

---end-of-Guidance-note---

Table D1 Variable functional loads on platform areas

<table>
<thead>
<tr>
<th></th>
<th>Local design</th>
<th>Primary design</th>
<th>Global design</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Distributed load $q$ (kN/m²)</td>
<td>Point load $P$ (kN)</td>
<td>Apply factor to distributed load</td>
</tr>
<tr>
<td>Storage areas</td>
<td>$q$</td>
<td>1.5 $q$</td>
<td>1.0</td>
</tr>
<tr>
<td>Lay down areas</td>
<td>$q$</td>
<td>1.5 $q$</td>
<td>$f$</td>
</tr>
<tr>
<td>Area between equipment</td>
<td>5.0</td>
<td>5.0</td>
<td>$f$</td>
</tr>
<tr>
<td>Walkways, staircases and external platforms</td>
<td>4.0</td>
<td>4.0</td>
<td>$f$</td>
</tr>
<tr>
<td>Walkways and staircases for inspection only</td>
<td>3.0</td>
<td>3.0</td>
<td>$f$</td>
</tr>
<tr>
<td>Internal platforms, e.g. in towers</td>
<td>3.0</td>
<td>1.5</td>
<td>$f$</td>
</tr>
<tr>
<td>Areas not exposed to other functional loads</td>
<td>2.5</td>
<td>2.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Notes:
---
- Point loads are to be applied on an area 100 mm × 100 mm, and at the most severe position, but not added to wheel loads or distributed loads.
- For internal platforms, point loads are to be applied on an area 200 mm × 200 mm.
- $q$ to be evaluated for each case. Lay down areas should not be designed for less than 15 kN/m².
- $f = \min\{1.0; (0.5 + 3/\sqrt{A})\}$, where $A$ is the loaded area in m².
- Global load cases shall be established based upon “worst case”, characteristic load combinations, complying with the limiting global criteria to the structure. For buoyant structures these criteria are established by requirements for the floating position in still water, and intact and damage stability requirements, as documented in the operational manual, considering variable load on the deck and in tanks.

---end-of-Guidance-note---
D 500  Miscellaneous loads

501  Railing shall be designed for a horizontal line load equal to 1.5 kN/m, applied to the top of the railing.

502  Ladders shall be designed for a concentrated load of 2.5 kN.

503  Requirements given in prEN50308 should be met when railing, ladders and other structures for use by personnel are designed.

---end---of---Guidance---note---

E. Environmental Loads (E)

E 100  General

101  Environmental loads are loads which may vary in magnitude, position and direction during the period under consideration, and which are related to operations and normal use of the structure. Examples are:

--- wind loads
--- hydrodynamic loads induced by waves and current, including drag forces and inertia forces
--- earthquake loads
--- current-induced loads
--- tidal effects
--- marine growth
--- snow and ice loads.

102  Practical information regarding environmental loads and environmental conditions is given in DNV-RP-C205.

103  According to this standard, characteristic environmental loads and load effects shall be determined as quantities with specified probabilities of exceedance. The statistical analysis of measured data or simulated data should make use of different statistical methods to evaluate the sensitivity of the result. The validation of distributions with respect to data should be tested by means of recognised methods. The analysis of the data shall be based on the longest possible time period for the relevant area. In the case of short time series, statistical uncertainty shall be accounted for when characteristic values are determined.

---end---of---Guidance---note---

E 200  Wind turbine loads

201  Wind-generated loads on the rotor and the tower shall be considered. Wind-generated loads on the rotor and the tower include wind loads produced directly by the inflowing wind as well as indirect loads that result from the wind-generated motions of the wind turbine and the operation of the wind turbine. The direct wind-generated loads consist of

--- aerodynamic blade loads (during operation, during parking and idling, during braking, and during start-up)
--- aerodynamic drag forces on tower and nacelle.

The following loads, which only indirectly are produced by wind and which are a result of the operation of the wind turbine, shall be considered as wind loads in structural design according to this standard:

--- gravity loads on the rotor blades, vary with time due to rotation
--- centrifugal forces and Coriolis forces due to rotation
--- gyroscopic forces due to yawing
--- braking forces due to braking of the wind turbine.

Guidance note:
Aerodynamic wind loads on the rotor and the tower may be determined by means of aeroelastic load models. Gyroscopic loads on the rotor will occur regardless of the structural flexibility whenever the turbine is yawing during operation and will lead to a yaw moment about the vertical axis and a tilt moment about a horizontal axis in the rotor plane. For yaw speeds below 0.5 Hz gyroscopic loads can be disregarded.

---end---of---Guidance---note---

202  For determination of wind loads, the following factors shall be considered:

--- tower shadow, tower stemming and vortex shedding, which are disturbances of the wind flow owing to the presence of the tower
--- wake effects wherever the wind turbine is located behind other turbines such as in wind farms
--- misaligned wind flow relative to the rotor axis, e.g. owing to a yaw error
--- rotational sampling, i.e. low-frequent turbulence will be transferred to high-frequent loads due to blades cutting through vortices
--- aeroelastic effects, i.e., the interaction between the motion of the turbine on the one hand and the wind field on the other
--- aerodynamic imbalance and rotor-mass imbalance due to differences in blade pitch
--- influence of the control system on the wind turbine, for example by limiting loads through blade pitching
--- turbulence and gusts
--- instabilities caused by stall-induced flapwise and edgewise vibrations must be avoided
--- damping
--- wind turbine controller.

Guidance note:
The damping comes about as a combination of structural damping and aerodynamic damping. The structural damping depends on the blade material and material in other components such as the tower. The aerodynamic damping can be determined as the outcome of an aeroelastic calculation in which correct properties for the aerodynamics are used.

The coherence of the wind and the turbulence spectrum of the wind are of significant importance for determination of tower loads such as the bending moment in the tower.

---end---of---Guidance---note---

203  Wind turbine loads during power production and selected transient events shall be verified by load measurements that cover the intended operational range, i.e. wind speeds between cut-in and cut-out. Measurements shall be carried out by an accredited testing laboratory or the certifying body shall verify that the party conducting the testing as a minimum complies with the criteria set forth in ISO/IEC 17020 or ISO/IEC 17025, as applicable.

204  For design of the support structure and the foundation, a number of load cases for wind turbine loads due to wind load on the rotor and on the tower shall be considered, corresponding to different design situations for the wind turbine. Different design situations may govern the designs of different parts of the support structure and the foundation.

The load cases shall be defined such that it is ensured that they capture the 50-year load or load effect, as applicable, for each structural part to be designed in the ULS. Likewise, the load cases shall be defined such that it is ensured that they capture all contributions to fatigue damage for design in the FLS. Finally, the load cases shall include load cases to adequately capture abnormal conditions associated with severe fault situations for the wind turbine in the ULS.

Because the wind turbine loads occur concurrently with other environmental loads such as loads from waves, current and water level, the load cases to be considered shall specify not only the wind turbine load conditions, but also their companion wave load conditions, current conditions and water level conditions.

Table E1 specifies a proposal for 31 load cases to consider for
wind turbine load conditions and their companion wave load conditions, current conditions and water level conditions in order to fulfil the requirements in this item. The load cases in Table E1 refer to design in the ULS and in the FLS and include a number of abnormal load cases for the ULS.

The load cases in Table E1 are defined in terms of wind conditions, which are characterised by wind speed. For most of the load cases, the wind speed is defined as a particular 10-minute mean wind speed plus a particular extreme coherent gust, which forms a perturbation on the mean wind speed. Extreme coherent gusts are specified in Sec.3 B505. Some load cases in Table E1 refer to the normal wind profile. The normal wind profile is given in Sec.3.

For each specified load case in Table E1, simulations for simultaneously acting wind and waves based on the waves given in the 4th column of Table E1 can be waived when it can be documented that it is not relevant to include a wave load or wave load effect for the design of a structural part in question.

**Guidance note:**
The 31 proposed load cases in Table E1 corresponds to 31 load cases defined in the committee draft of the coming standard IEC61400-3 on the basis of the load cases in IEC61400-1. The 31 load cases defined in the committee draft of IEC61400-3 are subject to discussion and may become subject to modifications.

Wind load case 1.4 is usually only relevant for design of the top of the tower, and wave loading may only in rare cases have an impact on the design of this structural part.

For analysis of the dynamic behaviour of the wind turbine and its support structure for concurrently acting wind and waves, it is important to carry out the analysis using time histories of both wind and waves or relevant dynamic amplification factors should be applied to a constant wind speed or individual wave height.

---end---of---Guidance---note---
<table>
<thead>
<tr>
<th>Design situation</th>
<th>Load case</th>
<th>Wind condition: Wind climate ($U_{10, hub}$) or wind speed ($U_{hub}$)</th>
<th>Wave condition: Sea state ($H_S$) or individual wave height ($H$) to combine with in simulations for simultaneous wind and waves (7)</th>
<th>Wind and wave directionality</th>
<th>Current</th>
<th>Water level</th>
<th>Other conditions</th>
<th>Limit state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power production</td>
<td>1.1</td>
<td>NTM $v_{in} &lt; U_{10, hub} &lt; v_{out}$</td>
<td>$SSS$, $H_S = E[H_S</td>
<td>U_{10, hub}]$</td>
<td>Codirectional in one direction</td>
<td>Wind-generated current</td>
<td>MWL</td>
<td>For prediction of extreme loads on RNA and interface to tower</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>NTM $v_{in} &lt; U_{10, hub} &lt; v_{out}$</td>
<td>$NSS$, $H_S$ according to joint probability distribution of $H_S$, $T_P$ and $U_{10, hub}$</td>
<td>Codirectional in one direction (See F900)</td>
<td>(5)</td>
<td>MWL</td>
<td>Range between upper and lower 1-year water level</td>
<td>FLS</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>ETM $v_{in} &lt; U_{10, hub} &lt; v_{out}$</td>
<td>$NSS$, $H_S = E[H_S</td>
<td>U_{10, hub}]$</td>
<td>Codirectional in one direction</td>
<td>Wind-generated current</td>
<td>MWL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>ECD $U_{10, hub} = v_f + 2 \text{ m/s}$</td>
<td>$NSS$, $H_S = E[H_S</td>
<td>U_{10, hub}]$ or NWH $H = E[H_S</td>
<td>U_{10, hub}]$ (3)</td>
<td>Misaligned</td>
<td>Wind-generated current</td>
<td>MWL</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>EWS $v_{in} &lt; U_{10, hub} &lt; v_{out}$</td>
<td>$NSS$, $H_S = E[H_S</td>
<td>U_{10, hub}]$ or NWH $H = E[H_S</td>
<td>U_{10, hub}]$ (3)</td>
<td>Codirectional in one direction</td>
<td>Wind-generated current</td>
<td>MWL</td>
</tr>
<tr>
<td></td>
<td>1.6a</td>
<td>NTM $v_{in} &lt; U_{10, hub} &lt; v_{out}$</td>
<td>$SSS$, $H_S = H_S, 50\text{-yr}$ (See item F703)</td>
<td>Codirectional in one direction</td>
<td>Wind-generated current</td>
<td>1-year water level (4)</td>
<td></td>
<td>ULS</td>
</tr>
<tr>
<td></td>
<td>1.6b</td>
<td>NTM $v_{in} &lt; U_{10, hub} &lt; v_{out}$</td>
<td>$SWH$, $H = H_{gw, yr}$ (See item F703)</td>
<td>Codirectional in one direction</td>
<td>Wind-generated current</td>
<td>1-year water level (4)</td>
<td></td>
<td>ULS</td>
</tr>
<tr>
<td>Power production plus occurrence of fault</td>
<td>2.1</td>
<td>NTM $v_{in} &lt; U_{10, hub} &lt; v_{out}$</td>
<td>$NSS$, $H_S = E[H_S</td>
<td>U_{10, hub}]$</td>
<td>Codirectional in one direction</td>
<td>Wind-generated current</td>
<td>MWL</td>
<td>Control system fault or loss of electrical connection</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>NTM $v_{in} &lt; U_{10, hub} &lt; v_{out}$</td>
<td>$NSS$, $H_S = E[H_S</td>
<td>U_{10, hub}]$</td>
<td>Codirectional in one direction</td>
<td>Wind-generated current</td>
<td>MWL</td>
<td>Protection system fault or preceding internal electrical fault</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>EOG $U_{10, hub} = v_{out}$ and $v_f \pm 2 \text{ m/s}$</td>
<td>$NSS$, $H_S = E[H_S</td>
<td>U_{10, hub}]$ or NWH $H = E[H_S</td>
<td>U_{10, hub}]$ (3) (6)</td>
<td>Codirectional in one direction</td>
<td>Wind-generated current</td>
<td>MWL</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>NTM $v_{in} &lt; U_{10, hub} &lt; v_{out}$</td>
<td>$NSS$, $H_S = E[H_S</td>
<td>U_{10, hub}]$</td>
<td>Codirectional in one direction (See F900)</td>
<td>(5)</td>
<td>MWL</td>
<td>Range between upper and lower 1-year water level</td>
</tr>
</tbody>
</table>
## Table E1 Proposed load cases combining various environmental conditions (Continued)

<table>
<thead>
<tr>
<th>Design situation</th>
<th>Load case</th>
<th>Wind condition: Wind climate (U_{10, \text{hub}}) or wind speed (U_{\text{hub}})</th>
<th>Wave condition: Sea state (H_S) or individual wave height (H) to combine with in simulations for simultaneous wind and waves</th>
<th>Wind and wave directionality</th>
<th>Current</th>
<th>Water level</th>
<th>Other conditions</th>
<th>Limit state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start up</td>
<td>3.1 NWP</td>
<td>(v_{\text{n}} &lt; U_{10, \text{hub}} &lt; v_{\text{out}}) + normal wind profile to find average vertical wind shear across swept area of rotor</td>
<td>(H_S = E[H_S</td>
<td>U_{10, \text{hub}}]) or NWH (H = E[H_S</td>
<td>U_{10, \text{hub}}])</td>
<td>Codirectional in one direction (See F900)</td>
<td>(5)</td>
<td>Range between upper and lower 1-year water level</td>
</tr>
<tr>
<td></td>
<td>3.2 EOG</td>
<td>(U_{10, \text{hub}} = v_{\text{in}}, v_{\text{out}} \pm 2 \text{ m/s})</td>
<td>(H_S = E[H_S</td>
<td>U_{10, \text{hub}}]) or NWH (H = E[H_S</td>
<td>U_{10, \text{hub}}])</td>
<td>Codirectional in one direction</td>
<td>Wind-generated current</td>
<td>MWL</td>
</tr>
<tr>
<td></td>
<td>3.3 EDC</td>
<td>(U_{10, \text{hub}} = v_{\text{in}}, v_{\text{out}} \pm 2 \text{ m/s})</td>
<td>(H_S = E[H_S</td>
<td>U_{10, \text{hub}}]) or NWH (H = E[H_S</td>
<td>U_{10, \text{hub}}])</td>
<td>Misaligned</td>
<td>Wind-generated current</td>
<td>MWL</td>
</tr>
<tr>
<td>Normal shutdown</td>
<td>4.1 NWP</td>
<td>(v_{\text{n}} &lt; U_{10, \text{hub}} &lt; v_{\text{out}}) + normal wind profile to find average vertical wind shear across swept area of rotor</td>
<td>(H_S = E[H_S</td>
<td>U_{10, \text{hub}}]) or NWH (H = E[H_S</td>
<td>U_{10, \text{hub}}])</td>
<td>Codirectional in one direction (See F900)</td>
<td>(5)</td>
<td>Range between upper and lower 1-year water level</td>
</tr>
<tr>
<td></td>
<td>4.2 EOG</td>
<td>(U_{10, \text{hub}} = v_{\text{out}} \pm 2 \text{ m/s})</td>
<td>(H_S = E[H_S</td>
<td>U_{10, \text{hub}}]) or NWH (H = E[H_S</td>
<td>U_{10, \text{hub}}])</td>
<td>Codirectional in one direction</td>
<td>Wind-generated current</td>
<td>MWL</td>
</tr>
<tr>
<td>Emergency shutdown</td>
<td>5.1 NTM</td>
<td>(U_{10, \text{hub}} = v_{\text{out}} \pm 2 \text{ m/s})</td>
<td>(H_S = E[H_S</td>
<td>U_{10, \text{hub}}])</td>
<td>Codirectional in one direction</td>
<td>Wind-generated current</td>
<td>MWL</td>
<td>ULS</td>
</tr>
</tbody>
</table>
Table E1 Proposed load cases combining various environmental conditions (Continued)

<table>
<thead>
<tr>
<th>Design situation</th>
<th>Load case</th>
<th>Wind condition: Wind climate ($U_{10, hub}$) or wind speed ($U_{hub}$)</th>
<th>Wave condition: Sea state ($H_S$) or individual wave height ($H$) to combine with in simulations for simultaneous wind and waves</th>
<th>Wind and wave directionality</th>
<th>Water level</th>
<th>Other conditions</th>
<th>Limit state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parked (standing still or idling)</td>
<td>6.1a EWM</td>
<td>Turbulent wind $U_{10, hub} = U_{10, 50-yr}$ (characteristic standard deviation of wind speed $\sigma_{U,c} = 0.11 \cdot U_{10, hub}$)</td>
<td>$H_S = H_{50-yr}$ (1)</td>
<td>Misaligned Multiple directions</td>
<td>50-year current 50-year water level</td>
<td>Loss of electrical network connection</td>
<td>ULS</td>
</tr>
<tr>
<td></td>
<td>6.1b EWM</td>
<td>Steady wind $U_{hub} = 1.4 \cdot U_{10, 50-yr}$</td>
<td>$H_S = H_{50-yr}$ (1)</td>
<td>Misaligned Multiple directions</td>
<td>50-year current 50-year water level</td>
<td>Loss of electrical network connection</td>
<td>ULS</td>
</tr>
<tr>
<td></td>
<td>6.1c RWM</td>
<td>Steady wind $U_{hub} = 1.1 \cdot U_{10, 50-yr}$</td>
<td>$H_S = H_{50-yr}$ (1)</td>
<td>Misaligned Multiple directions</td>
<td>50-year current 50-year water level</td>
<td>Loss of electrical network connection</td>
<td>ULS</td>
</tr>
<tr>
<td></td>
<td>6.2a EWM</td>
<td>Turbulent wind $U_{10, hub} = U_{10, 50-yr}$ (characteristic standard deviation of wind speed $\sigma_{U,c} = 0.11 \cdot U_{10, hub}$)</td>
<td>$H_S = H_{50-yr}$ (1)</td>
<td>Misaligned Multiple directions</td>
<td>50-year current 50-year water level</td>
<td>Extreme yaw misalignment</td>
<td>ULS</td>
</tr>
<tr>
<td></td>
<td>6.2b EWM</td>
<td>Steady wind $U_{hub} = 1.4 \cdot U_{10, 50-yr}$</td>
<td>$H_S = H_{50-yr}$ (1)</td>
<td>Misaligned Multiple directions</td>
<td>50-year current 50-year water level</td>
<td>Extreme yaw misalignment</td>
<td>ULS</td>
</tr>
<tr>
<td></td>
<td>6.2c RWM</td>
<td>Steady wind $U_{hub} = 0.88 \cdot U_{10, 50-yr}$</td>
<td>$H_S = H_{50-yr}$ (1)</td>
<td>Misaligned Multiple directions</td>
<td>50-year current 50-year water level</td>
<td>Extreme yaw misalignment</td>
<td>ULS</td>
</tr>
<tr>
<td></td>
<td>6.3a EWM</td>
<td>Turbulent wind $U_{10, hub} = U_{10, 1-yr}$ (characteristic standard deviation of wind speed $\sigma_{U,c} = 0.11 \cdot U_{10, hub}$)</td>
<td>$H_S = H_{1-yr}$ (1)</td>
<td>Misaligned Multiple directions</td>
<td>1-year current 1-year water level</td>
<td>Range between upper and lower 1-year water level</td>
<td>ULS</td>
</tr>
<tr>
<td></td>
<td>6.3b EWM</td>
<td>Steady wind $U_{hub} = 1.4 \cdot U_{10, 1-yr}$</td>
<td>$H_S = H_{1-yr}$ (1)</td>
<td>Misaligned Multiple directions</td>
<td>1-year current 1-year water level</td>
<td>Range between upper and lower 1-year water level</td>
<td>ULS</td>
</tr>
<tr>
<td></td>
<td>6.3c RWM</td>
<td>Steady wind $U_{hub} = 0.88 \cdot U_{10, 1-yr}$</td>
<td>$H_S = H_{1-yr}$ (1)</td>
<td>Misaligned Multiple directions</td>
<td>1-year current 1-year water level</td>
<td>Range between upper and lower 1-year water level</td>
<td>ULS</td>
</tr>
<tr>
<td>Parked and fault conditions</td>
<td>7.1a EWM</td>
<td>Turbulent wind $U_{10, hub} = U_{10, 50-yr}$ (characteristic standard deviation of wind speed $\sigma_{U,c} = 0.11 \cdot U_{10, hub}$)</td>
<td>$H_S = H_{50-yr}$ (1)</td>
<td>Codirectional in multiple directions (See F900)</td>
<td>50-year current 50-year water level</td>
<td>Range between upper and lower 50-year water level</td>
<td>ULS</td>
</tr>
<tr>
<td></td>
<td>7.1b EWM</td>
<td>Steady wind $U_{hub} = 1.4 \cdot U_{10, 50-yr}$</td>
<td>$H_S = H_{50-yr}$ (1)</td>
<td>Codirectional in multiple directions (See F900)</td>
<td>50-year current 50-year water level</td>
<td>Range between upper and lower 50-year water level</td>
<td>ULS</td>
</tr>
<tr>
<td></td>
<td>7.1c RWM</td>
<td>Steady wind $U_{hub} = 0.88 \cdot U_{10, 50-yr}$</td>
<td>$H_S = H_{50-yr}$ (1)</td>
<td>Codirectional in multiple directions (See F900)</td>
<td>50-year current 50-year water level</td>
<td>Range between upper and lower 50-year water level</td>
<td>ULS</td>
</tr>
<tr>
<td></td>
<td>7.2 EWM</td>
<td>Turbulent wind $U_{10, hub} &lt; 0.7 \cdot U_{10, 50-yr}$ (characteristic standard deviation of wind speed $\sigma_{U,c} = 0.11 \cdot U_{10, hub}$)</td>
<td>$H_S =$ $H_{50-yr}$ (1)</td>
<td>Codirectional in multiple directions (See F900)</td>
<td>50-year current 50-year water level</td>
<td>Range between upper and lower 50-year water level</td>
<td>ULS</td>
</tr>
<tr>
<td></td>
<td>7.2b EWM</td>
<td>Steady wind $U_{hub} &lt; 0.7 \cdot U_{10, 50-yr}$</td>
<td>$H_S =$ $H_{50-yr}$ (1)</td>
<td>Codirectional in multiple directions (See F900)</td>
<td>50-year current 50-year water level</td>
<td>Range between upper and lower 50-year water level</td>
<td>ULS</td>
</tr>
<tr>
<td></td>
<td>7.2c RWM</td>
<td>Steady wind $U_{hub} &lt; 0.7 \cdot U_{10, 50-yr}$</td>
<td>$H_S =$ $H_{50-yr}$ (1)</td>
<td>Codirectional in multiple directions (See F900)</td>
<td>50-year current 50-year water level</td>
<td>Range between upper and lower 50-year water level</td>
<td>ULS</td>
</tr>
</tbody>
</table>
Table E1 Proposed load cases combining various environmental conditions (Continued)

<table>
<thead>
<tr>
<th>Design situation</th>
<th>Load case</th>
<th>Wind condition: Wind climate (U_{10,\text{hub}}) or wind speed (U_{\text{hub}})</th>
<th>Wave condition: Sea state (H_S) or individual wave height (H) to combine with in simulations for simultaneous wind and waves (7)</th>
<th>Wind and wave directionality</th>
<th>Current</th>
<th>Water level</th>
<th>Other conditions</th>
<th>Limit state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport, assembly, maintenance and repair</td>
<td>8.2a EWM</td>
<td>Steady wind (U_{\text{hub}} = 1.4 \cdot U_{10,1-yr})</td>
<td>RWH (H = \psi \cdot H_{1-yr})  (2)</td>
<td>Codirectional in one direction</td>
<td>1-year current</td>
<td>1-year water level</td>
<td></td>
<td>ULS Abnormal</td>
</tr>
<tr>
<td></td>
<td>8.2b RWM</td>
<td>Steady wind (U_{\text{hub}} = 0.88 \cdot U_{10,50-yr})</td>
<td>EWH (H = H_{1-yr})</td>
<td>Codirectional in one direction</td>
<td>1-year current</td>
<td>1-year water level</td>
<td></td>
<td>ULS Abnormal</td>
</tr>
<tr>
<td></td>
<td>8.3 NTM  (U_{10,\text{hub}} &lt; 0.7U_{10,50-yr})</td>
<td>NSS (H_S) according to joint probability distribution of (H_S), TP and (U_{10,\text{hub}})</td>
<td>Codirectional in multiple direction (See F900)</td>
<td>(\text{Range between upper and lower 1-year water level})</td>
<td>(\text{Range between upper and lower 1-year water level})</td>
<td></td>
<td>FLS</td>
<td></td>
</tr>
</tbody>
</table>

1) In cases where load and response simulations are to be performed and the simulation period is shorter than the reference period for the significant wave height \(H_S\), the significant wave height needs to be converted to a reference period equal to the simulation period, see 3C202. Moreover, an inflation factor on the significant wave height needs to be applied in order to make sure that the shorter simulation period captures the maximum wave height when the original reference period does. When the reference period is 3 hours and the simulation period is 1 hour, the combined conversion and inflation factor is 1.09 provided the wave heights are Rayleigh-distributed and the number of waves in 3 hours is 1000. Likewise, if the simulation period is longer than the averaging period for the mean wind speed, a deflation factor on \(U_{10}\) may be applied. When the simulation period is 1 hour and the averaging period is 10 minutes, the deflation factor may be taken as 0.95.

2) It is practice for offshore structures to apply \(\psi = H_{5-yr}/H_{50-yr}\), where \(H_{5-yr}\) and \(H_{50-yr}\) denote the individual wave heights with 5- and 50-year return period, respectively. The shallower the water depth, the larger is usually the value of \(\psi\).

3) The load case is not driven by waves and it is optional whether the wind load shall be combined with an individual wave height or with a sea state.

4) The water level shall be taken as the upper-tail 50-year water level in cases where the extreme wave height will become limited by the water depth.

5) In principle, current acting concurrently with the design situation in question needs to be included, because the current influences the hydrodynamic coefficients and thereby the fatigue loading relative to the case without current. However, in many cases current will be of little importance and can be ignored, e.g. when the wave loading is inertia-dominated or when the current speed is small.

6) In the case that the extreme operational gust is combined with an individual wave height rather than with a sea state, the resulting load shall be calculated for the most unfavourable location of the profile of the individual wave relative to the temporal profile of the gust.

7) Whenever the wave loading associated with a specific load case refers to a wave train or a time series of wave loads, the sought-after combined load effect shall be interpreted as the maximum resulting load effect from the time series of load effects which is produced by the simulations.
Analysis of the load cases in Table E1 shall be carried out for assumptions of aligned wind and waves or misaligned wind and waves, or both, as relevant. Analysis of the load cases in Table E1 shall be carried out for assumptions of wind in one single direction or wind in multiple directions, as relevant.

9 of the 31 load cases specified in Table E1 define abnormal load cases to be considered for loads and load effects due to wind loading on the rotor and the tower in the ULS. Abnormal load cases are wind load cases associated with a number of severe fault situations for the wind turbine, which result in activation of system protection functions. Abnormal load cases are in general less likely to occur than the normal load cases considered for the ULS in Table E1.

Computer codes which are used for prediction of wind turbine loads shall be validated for the purpose. The validation shall be documented.

Table E1 refers to two turbulence models, viz. the normal turbulence model NTM and the extreme turbulence model ETM. By the NTM the characteristic value $\sigma_{U,C}$ of the standard deviation $\sigma_U$ of the wind speed shall be taken as the 90% quantile in the probability distribution of $\sigma_U$ conditional on $U_{10\text{hub}}$. By the ETM the characteristic value $\sigma_{U,C}$ of the standard deviation $\sigma_U$ of the wind speed shall be taken as the value of $\sigma_U$ which together with $U_{10\text{hub}}$ forms a combined ($U_{10\text{hub}}$ $\sigma_U$) event with a return period of 50 years.

Guidance note:
When available turbulence data are insufficient to establish the characteristic standard deviation $\sigma_U$ of the wind speed, the following expressions may be applied for this standard deviation for the normal and extreme turbulence models, respectively:

$$\sigma_{U,C,NTM} = I_{ref} \cdot (0.75(U_{10\text{hub}}/c) + b)$$

$$\sigma_{U,C,ETM} = c \cdot I_{ref} \cdot (0.072 \cdot (V_{ave}/c + 3) \cdot (U_{10\text{hub}}/c - 4) + 10)$$

in which $I_{ref}$ is a reference turbulence intensity defined as the expected turbulence intensity at a 10-minute mean wind speed of 15 m/s, $V_{ave}$ is the annual average wind speed at hub height, $b = 5.6$ m/s and $c = 2$ m/s.

The expressions are based on probability distribution assumptions which do not account for wake effects in wind farms. The expressions are therefore not valid for design of wind turbine structures for locations whose extreme turbulences are governed by wake effects.

---end-of-Guidance-Note---

The wind turbine loads in items 201 through 208 do not apply to meteorological masts nor to other structures which do not support wind turbines. For such structures, wind loads, which have not been filtered through a wind turbine to form turbine loads, shall be considered. Wind loads on meteorological masts may be calculated according to EN 1991-1-4.

Load combinations where these wind loads are combined with other types of environmental loads can be taken according to DNV-OS-C101.

Guidance note:
Detailed methods for calculation of wind loads on meteorological masts are given in DIN 4131 and DIN 4133.

---end-of-Guidance-Note---

**E 300 Determination of characteristic hydrodynamic loads**

Hydrodynamic loads shall be determined by analysis. When theoretical predictions are subjected to significant uncertainties, theoretical calculations shall be supported by model tests or full scale measurements of existing structures or by a combination of such tests and full scale measurements.

Hydrodynamic model tests should be carried out to:

- confirm that no important hydrodynamic feature has been overlooked by varying the wave parameters (for new types of installations, environmental conditions, adjacent structure, etc.)
- support theoretical calculations when available analytical methods are susceptible to large uncertainties
- verify theoretical methods on a general basis.

Models shall be sufficient to represent the actual installation. The test set-up and registration system shall provide a basis for reliable, repeatable interpretation.

Full-scale measurements may be used to update the response prediction of the relevant structure and to validate the response analysis for future analysis. Such tests may especially be applied to reduce uncertainties associated with loads and load effects which are difficult to simulate in model scale.

In full-scale measurements it is important to ensure sufficient instrumentation and logging of environmental conditions and responses to ensure reliable interpretation.

**E 400 Wave loads**

For calculation of wave loads, a recognised wave theory for representation of the wave kinematics shall be applied. The wave theory shall be selected with due consideration of the water depth and of the range of validity of the theory.

Methods for wave load prediction shall be applied that properly account for the size, shape and type of structure.

For slender structures, such as jacket structure components and monopile structures, Morison’s equation can be applied to calculate the wave loads.

For large volume structures, for which the wave kinematics are disturbed by the presence of the structure, wave diffraction analysis shall be performed to determine local (pressure force) and global wave loads. For floating structures wave radiation forces must be included.

Both viscous effects and potential flow effects may be important in determining the wave-induced loads on a wind turbine support structure. Wave diffraction and radiation are included in the potential flow effects.

Guidance note:
Figure 1 can be used as a guidance to establish when viscous effects or potential flow effects are important. Figure 1 refers to horizontal wave-induced forces on a vertical cylinder, which stands on the seabed and penetrates the free water surface, and which is subject to incoming regular waves.

---end-of-Guidance-Note---

**Figure 1**
Relative importance of inertia, drag and diffraction wave forces
cylinder submerged in water, can be predicted by Morison’s equation. By this equation, the horizontal force on a vertical element $dz$ of the structure at level $z$ is expressed as:

$$dF = dF_M + dF_D = C_M\rho \pi \left(\frac{D^2}{4}\right) \dddot{x} dz + C_D \rho \frac{D}{2} |\dot{z}| dz$$

where the first term is an inertia force and the second term is a drag force. Here, $C_D$ and $C_M$ are drag and inertia coefficients, respectively, $D$ is the diameter of the cylinder, $\rho$ is the density of water, $\dddot{x}$ is the horizontal wave-induced velocity of water, and $\dot{z}$ is the horizontal wave-induced acceleration of water. The level $z$ is measured from still water level, and the $z$ axis points upwards. Thus, at seabed $z = -d$, when the water depth is $d$.

Guidance note:

The drag and inertia coefficients are in general functions of the Reynolds number, the Keulegan-Carpenter number and the relative roughness. The coefficient also depends on the cross-sectional shape of the structure and the orientation of the body. For a cylindrical structural member of diameter $D$, the Reynolds number is defined as $Re = \frac{umax D}{\nu}$ and the Keulegan-Carpenter number as $KC = \frac{umax T}{D}$, where $umax$ is the maximum horizontal particle velocity at still water level, $\nu$ is the kinematic viscosity of seawater, and $T_i$ is the intrinsic period of the waves. $Re$ and $KC$, and in turn $C_D$ and $C_M$, may attain different values for the extreme waves that govern the ULS and for the moderate waves that govern the FLS.

The drag coefficient $C_{DS}$ for steady-state flow can be used as a basis for calculation of $C_D$ and $C_M$. The drag coefficient $C_{DS}$ for steady-state flow depends on the roughness of the surface of the structural member and may be taken as

$$C_{DS} = \begin{cases} 0.65 & \text{for } k/D < 10^{-4} \text{ (smooth)} \\ \frac{29 + 4 \log_{10}(k/D)}{20} & \text{for } 10^{-4} < k/D < 10^{-2} \\ 1.05 & \text{for } k/D > 10^{-2} \text{ (rough)} \end{cases}$$

in which $k$ is the surface roughness and $D$ is the diameter of the structural member. New uncoated steel and painted steel can be assumed to be smooth. For concrete and highly rusted steel, $k = 0.003$ m can be assumed. For marine growth, $k = 0.005$ to 0.05 m can be assumed.

The drag coefficient $C_p$ depends on $C_{DS}$ and on the KC number and can be calculated as

$$C_p = C_{DS} \cdot \psi(KC, C_{DS})$$

in which the wake amplification factor $\psi$ can be read off from Figure 2. For intermediate roughnesses between smooth and rough, linear interpolation is allowed between the curves for smooth and rough cylinder surfaces in Figure 2.

![Figure 2](image-url)

Wake amplification factor as function of KC number for smooth (solid line) and rough (dotted line)

For $KC < 3$, potential theory is valid with $C_M = 2.0$. For $KC > 3$, the inertia coefficient $C_M$ can be taken as

$$C_M = \max\left(2.0 - 0.044(KC - 3); 1.6 - (C_{DS} - 0.65)\right)$$

where $C_{DS}$ depends on the surface roughness of the structural member as specified above.

As an example, in 30 to 40 meters of water in the southern and central parts of the North Sea, $C_D = 0.8$ and $C_M = 1.6$ can be applied for diameters less than 2.2 m for use in load calculations for fatigue limit states.

For structures in shallow waters and near coastlines where there is a significant current in addition to the waves, $C_{DS}$ should not be taken less than 2.0.

For long waves in shallow water, the depth variation of the particle velocity is usually not large. Hence it is recommended to use force coefficients based on the maximum horizontal water particle velocity $umax$ at the free surface.

When waves are asymmetric, which may in particular be the case in shallow waters, the front of the wave has a different steepness than the rear of the wave. Since the wave force on a structure depends on the steepness of the wave, caution must be exercised to apply the asymmetric wave to the structure in such a manner that the wave load impact is calculated from that of the two wave steepnesses which will produce the largest force on the structure.

The resulting horizontal force $F$ on the cylinder can be found by integration of Morison’s equation for values of $z$ from $-d$ to the wave crest, $\eta(t)$.

Guidance note:

For non-breaking waves, the resulting horizontal force becomes

$$F = F_M + F_D = \int_{-d}^{\eta(t)} C_M \rho \pi \left(\frac{D^2}{4}\right) \dddot{x} dz + \int_{-d}^{\eta(t)} C_D \rho \frac{D}{2} |\dot{z}| dz$$

The integration from $-d$ to 0 ignores contributions to the force from the wave crest above the still water level at $z = 0$. This is a minor problem when the inertia force $F_M$ is the dominating force component in $F$, since $F_M$ has its maximum when a nodal line at
the still water level passes the structure. The drag force $F_D$ has its maximum when the crest or trough passes the structure. If this force is the dominating force component in $F$, a significant error can be introduced by ignoring the contribution from the wave crest.

The relative magnitude between the inertia force component $F_M$ and the drag force component $F_D$ can be expressed by the ratio between their amplitudes, $A = A_M/A_D$. Figure 2 can be used to quickly establish whether the inertia force or the drag force is the dominating force, once the ratios $H/D$ and $d/\lambda$ have been calculated. Structures which come out above the curve marked $A = 1$ in Figure 2 experience drag-dominated loads, whereas structures which come out below this curve experience inertia-dominated loads.

Morison’s equation is only valid when the dimension of the structure is small relative to the wave length, i.e. when $D < 0.2\lambda$. The integrated version of Morison’s equation given here is only valid for non-breaking waves. However, Morison’s equation as formulated for a vertical element $dz$ is valid for calculation of wave forces from both breaking and non-breaking waves as long as the element is fully submerged. In deep water, waves break when $H/\lambda$ exceeds about 0.14. In shallow water, waves break when $H/d$ exceeds about 0.78.

Figure 2 is based on linear wave theory and should be used with caution, since linear wave theory may not always be an adequate wave theory as a basis for prediction of wave forces in particularly shallow waters. 5th order stream function theory is usually considered the best wave theory for representation of wave kinematics in shallow waters. For prediction of wave forces for fatigue assessment, higher order stream function theory can be applied for water depths less than approximately 15 m, whereas Stokes 5th order theory is recommended for water depths in excess of approximately 30 m.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

![Figure 3](image-url)

Figure 3  
Relative magnitude of inertia and drag forces for cylinders with $D/\lambda < 0.2$

When the dimension of the structure is large compared with the wave length, typically when $D > 0.2\lambda$, Morison’s equation is not valid. The inertia force will be dominating and can be predicted by diffraction theory.

**Guidance note:**

For linear waves, the maximum horizontal force on a vertical cylinder of radius $R = D/2$ installed in water of depth $d$ and subjected to a wave of amplitude $A_W$, can be calculated as

$$F_{X,max} = \frac{4 \rho g A_W}{k^2} \sinh[k(d + A_W \sin \alpha)] \xi$$

and its arm measured from the seabed is

$$h_F = d \left( \frac{\sinh[kd] - \cosh[kd]}{kd \sinh[kd]} + 1 \right)$$

The coefficients $\xi$ and $\alpha$ are given in Table E2.

The diffraction solution for a vertical cylinder given above is referred to as the MacCamy-Fuchs solution. The terms given represents essentially a corrected inertia term which can be used in Morison’s equation together with the drag term.

The formulae given in this guidance note are limited to vertical circular cylinders with constant diameter $D$. For other geometries of the support structure, such as when a conical component is present in the wave-splash zone to absorb or reduce ice loads, diffraction theory is still valid, but the resulting force and moment arm will come out different from the vertical cylinder solutions given here.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

408 For evaluation of load effects from wave loads, possible ringing effects shall be included in the considerations. When a steep, high wave encounters a monopile, high frequency non-linear wave load components can coincide with natural frequencies of the structure causing resonant transient response in the global bending modes of the pile. Such ringing effects are
only of significance in combination with extreme first order wave frequency effects. Ringing should be evaluated in the time domain with due consideration of higher order wave load effects. The magnitude of the first ringing cycles is governed by the magnitude of the wave impact load and its duration is related to the structural resonance period.

Guidance note:
Ringing can occur if the lowest natural frequencies of the structure do not exceed three to four times the typical wave frequency. In case the natural frequency exceeds about five to six times $f_p$, where $f_p$ denotes the peak frequency, ringing can be ruled out. When a dynamic analysis is carried out, any ringing response will automatically appear as part of the results from the analysis, provided the wave forces are properly modelled and included in the analysis.

table E2 Coefficients \( \xi \) and \( \alpha \)

<table>
<thead>
<tr>
<th>AR</th>
<th>( \xi )</th>
<th>( \alpha(%) )</th>
<th>AR</th>
<th>( \xi )</th>
<th>( \alpha(%) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>0.00663</td>
<td>0.018</td>
<td>0.04</td>
<td>0.00252</td>
<td>0.072</td>
</tr>
<tr>
<td>0.05</td>
<td>0.01568</td>
<td>0.162</td>
<td>0.06</td>
<td>0.01912</td>
<td>0.289</td>
</tr>
<tr>
<td>0.10</td>
<td>0.03136</td>
<td>0.453</td>
<td>0.12</td>
<td>0.07262</td>
<td>0.653</td>
</tr>
<tr>
<td>0.14</td>
<td>0.03136</td>
<td>0.889</td>
<td>0.16</td>
<td>0.14148</td>
<td>1.480</td>
</tr>
<tr>
<td>0.16</td>
<td>0.04095</td>
<td>1.162</td>
<td>0.20</td>
<td>0.14598</td>
<td>1.884</td>
</tr>
<tr>
<td>0.20</td>
<td>0.05197</td>
<td>1.471</td>
<td>0.25</td>
<td>0.16133</td>
<td>1.681</td>
</tr>
<tr>
<td>0.22</td>
<td>0.06433</td>
<td>1.616</td>
<td>0.30</td>
<td>0.16133</td>
<td>1.681</td>
</tr>
</tbody>
</table>

where \( u \) denotes the water particle velocity in the plunging wave crest, \( \rho \) is the mass density of the fluid, \( A \) is the area on the structure which is assumed exposed to the slamming force, and \( C_S \) is the slaming coefficient. For a smooth circular cylinder, the slamming coefficient should not be taken less than 3.0. The upper limit for the slamming coefficient is 2 $\pi$. Careful selection of slamming coefficients for structures can be made according to DNV-RP-C205. The area \( A \) exposed to the slamming force depends on how far the plunging breaker has come relative to the structure, i.e., how wide or pointed it is when it hits the structure. Plunging waves are rare in Danish and German waters.

For a plunging wave that breaks immediately in front of a vertical cylinder of diameter \( D \), the duration \( T \) of the impact force on the cylinder is given by

\[
T = \frac{13D}{64c}
\]

where \( c \) is the wave speed, \( D \) is the diameter of the cylinder, and \( c \) is the wave frequency.

Guidance note:
Sufficient experience is available, provided the location in question is located in the southern or central parts of the North Sea. The penetration distance \( s \) for a section in question is the horizontal distance from the periphery on the wet side of the cylinder to the sloping water surface, measured in the direction of the wave propagation. For fully submerged sections of the cylinder, the wave forces can be determined from classical Morison theory with mass and drag terms using constant mass and drag coefficients,

\[
f = \rho C_M \frac{D^2}{4} \frac{du}{dt} + \frac{1}{2} \rho C_D D u^2
\]

The water particle velocity \( u \) is determined from the wave kinematics for the particular type of breaking wave in question.

411 Computer codes which are used for prediction of wave loads on wind turbine structures shall be validated for the purpose. The validation shall be documented.

412 Characteristic extreme wave loads are in this standard defined as wave load values with a 50-year return period.

Guidance note:
In the southern and central part of the North Sea, experience shows that the ratio between the 100- and 50-year wave load values

\[
F_{wave,100}/F_{wave,50}
\]

attains a value approximately equal to 1.10. Unless data indicate otherwise, this value of the ratio

\[
F_{wave,100}/F_{wave,50}
\]

may be applied to achieve the 50-year wave load for structures which have not yet fully penetrated the sloping water surface, and can be calculated as

\[
f = \frac{\rho C_M}{4} \left( \frac{D^2}{D + 19s} + \frac{0.107s}{D} \right)
\]

For surging and spilling waves, an approach to calculate the associated wave forces on a vertical cylindrical structure of diameter \( D \) can be outlined as follows: The cylinder is divided into a number of sections. As the breaking wave approaches the structure, the instantaneous wave elevation close to the cylinder defines the time instant when a section is hit by the wave and starts to penetrate the sloping water surface. The instantaneous force per vertical length unit on this section and on underlying sections, which have not yet fully penetrated the sloping water surface, can be calculated as

\[
f = \rho C_M \frac{D^2}{4} \frac{du}{dt} + \frac{1}{2} \rho C_D D u^2
\]

The water particle velocity \( u \) is determined from the wave kinematics for the particular type of breaking wave in question.

411 Computer codes which are used for prediction of wave loads on wind turbine structures shall be validated for the purpose. The validation shall be documented.

412 Characteristic extreme wave loads are in this standard defined as wave load values with a 50-year return period.

Guidance note:
In the southern and central part of the North Sea, experience shows that the ratio between the 100- and 50-year wave load values

\[
F_{wave,100}/F_{wave,50}
\]

attains a value approximately equal to 1.10. Unless data indicate otherwise, this value of the ratio

\[
F_{wave,100}/F_{wave,50}
\]

may be applied to achieve the 50-year wave load for structures which have not yet fully penetrated the sloping water surface, and can be calculated as

\[
f = \rho C_M \frac{D^2}{4} \frac{du}{dt} + \frac{1}{2} \rho C_D D u^2
\]

The water particle velocity \( u \) is determined from the wave kinematics for the particular type of breaking wave in question.

411 Computer codes which are used for prediction of wave loads on wind turbine structures shall be validated for the purpose. The validation shall be documented.

412 Characteristic extreme wave loads are in this standard defined as wave load values with a 50-year return period.

Guidance note:
In the southern and central part of the North Sea, experience shows that the ratio between the 100- and 50-year wave load values

\[
F_{wave,100}/F_{wave,50}
\]

attains a value approximately equal to 1.10. Unless data indicate otherwise, this value of the ratio

\[
F_{wave,100}/F_{wave,50}
\]

may be applied to achieve the 50-year wave load for structures which have not yet fully penetrated the sloping water surface, and can be calculated as

\[
f = \rho C_M \frac{D^2}{4} \frac{du}{dt} + \frac{1}{2} \rho C_D D u^2
\]

The water particle velocity \( u \) is determined from the wave kinematics for the particular type of breaking wave in question.

411 Computer codes which are used for prediction of wave loads on wind turbine structures shall be validated for the purpose. The validation shall be documented.

412 Characteristic extreme wave loads are in this standard defined as wave load values with a 50-year return period.
the design wave crest are allowed to pass without risk of touching the platform.

**Guidance note:**
Sufficient airgap is necessary in order to avoid slamming forces on an access platform. When the airgap is calculated, it is recommended to consider an extra allowance to account for possible local wave effects due to local seabed topography and shoreline orientation. The extra allowance should be at least 1.0 m. For large-volume structures, airgap calculation should include wave diffraction analysis.

It is also important to consider run-up, i.e. water pressed upwards along the surface of the structure or the structural members that support the access platform, either by including such run-up in the calculation of the necessary airgap or by designing the platform for the loads from such run-up.

---end-of-Guidance-note---

### 414 For prediction of wave loading, the effect of disturbed water particle kinematics due to secondary structures shall be accounted for. Disturbed kinematics due to large volume structures should be calculated by a wave diffraction analysis. For assessment of shielding effects due to multiple slender structures reference is made to DNV-RP-C205.

### E 500 Ice loads

#### 501 Loads from laterally moving ice shall be based on relevant full scale measurements, on model experiments which can be reliably scaled, or on recognised theoretical methods. When determining the magnitude and direction of ice loads, consideration is to be given to the nature of the ice, the mechanical properties of the ice, the ice-structure contact area, the size and shape of the structure, and the direction of the ice movements. The oscillating nature of the ice loads, including build-up and fracture of moving ice, is to be considered.

**Guidance note:**
Theoretical methods for calculation of ice loads should always be used with caution.

In sheltered waters and in waters close to the coastline, a rigid ice cover will usually not move once it has grown to exceed some limiting thickness, see 3F305. In such land-locked waters, loads caused by moving ice may be calculated on the basis of this limiting thickness only, while loads associated with thermal pressures, arch effects and vertical lift need to be calculated on the basis of the actual characteristic ice thickness as required by this standard.

In open sea, where moving ice can be expected regardless of thickness, all ice loads shall be based on the actual characteristic ice thickness as required by this standard.

---end-of-Guidance-note---

#### 502 Where relevant, ice loads other than those caused by laterally moving ice are to be taken into account. Such ice loads include, but are not limited to, the following:

- loads due to rigid covers of ice, including loads due to arch effects and water level fluctuations
- loads due to masses of ice frozen to the structure
- pressures from pack ice and ice walls
- thermal ice pressures associated with temperature fluctuations in a rigid ice cover
- possible impact loads during thaw of the ice, e.g. from falling blocks of ice
- loads due to icing and ice accretion.

**Guidance note:**
Owing to the very large forces associated with pack ice, it is not recommended to install wind turbines in areas where pack ice may build up.

---end-of-Guidance-note---

#### 503 Table E3 specifies a proposal for 7 load cases to consider for ice load conditions and their companion wind load conditions in order to fulfil the requirements in 501 and 502. The load cases in Table E3 refer to design in the ULS and in the FLS. The load cases for design in the ULS are based on a characteristic ice thickness $t_{C}$ equal to the 50-year ice thickness $t_{50}$ or equal to the limiting thickness $t_{\text{lim}}$, depending on location.

#### 504 Wherever there is a risk that falling blocks of ice may hit a structural member, a system to protect these members from the falling ice shall be arranged.

#### 505 Possible increases in volume due to icing are to be considered when wind and wave loads acting on such volumes are to be determined.

#### 506 The structure shall be designed for horizontal and vertical static ice loads. Frictional coefficients between ice and various structural materials are given in 3F307. Ice loads on vertical structures may be determined according to API RP2N.

**Guidance note:**
Horizontal loads from moving ice should be considered to act in the same direction as the concurrent wind loads.

Unilateral thermal ice pressures due to thermal expansion and shrinkage can be assumed to act from land outwards toward the open sea or from the centre of a wind farm radially outwards. Larger values of unilateral thermal ice pressures will apply to stand-alone structures and to the peripheral structures of a wind farm than to structures in the interior of a wind farm. The water level to be used in conjunction with calculation of ice loads shall be taken as the high water level or the low water level with the required return period, whichever is the most unfavourable.
507 Ice loads on inclined structural parts such as ice-load reducing cones in the splash zone may be determined according to Ralston’s formulae. Ralston’s formulae are given in Appendix L.

Guidance note:
To achieve an optimal ice cone design and avoid that ice load governs the design of the support structure and foundation, it is recommended to adjust the inclination angle of the cone such that the design ice load is just less than the design wave load.

For ice-load reducing cones of the “inverted cone” type that will tend to force moving ice downwards, the bottom of ice-load reducing cones is recommended to be located a distance of at least one ice thickness below the water level.

The flexural strength of ice governs the ice loads on inclined structures. Table E4 specifies values of the flexural strength for various return periods in different waters.

---end-of-Guidance-note---

508 The characteristic local ice pressure for use in design against moving ice shall be taken as

\[ r_{local,C} = r_{u,C} \sqrt{1 + \frac{L_C^2}{4 A_{local}}} \]

where \( r_{u,C} \) is the characteristic compressive strength of the ice, \( t_C \) is the characteristic thickness of the ice, and \( A_{local} \) is the area over which the locale ice pressure is applied.

Guidance note:
The characteristic compressive strength of ice depends on local conditions such as the salinity. For load cases, which represent rare events, the characteristic compressive strength is expressed in terms of a required return period. Table E5 specifies values of the compressive strength for various return periods in different waters.

For load cases, which are based on special events during thaw, break-up and melting, lower values than those associated with rare events during extreme colds apply. 1.5 MPa applies to rigid ice during spring at temperatures near the melting point. 1.0 MPa applies to partly weakened, melting ice at temperatures near the melting point.

Local values for the characteristic ice thickness \( t_C \) shall be applied.

---end-of-Guidance-note---

### Table E3 Proposed load cases combining ice loading and wind loading

<table>
<thead>
<tr>
<th>Design situation</th>
<th>Load case</th>
<th>Ice condition</th>
<th>Wind condition: Wind climate (( U_{10\text{hub}} ))</th>
<th>Water level</th>
<th>Other conditions</th>
<th>Limit state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power production</td>
<td>E1</td>
<td>Horizontal load due to temperature fluctuations</td>
<td>( v_{in} &lt; U_{10\text{hub}} &lt; v_{out} ) + NTM, 10-minute mean wind speed resulting in maximum thrust</td>
<td>1-year water level</td>
<td></td>
<td>ULS</td>
</tr>
<tr>
<td></td>
<td>E2</td>
<td>Horizontal load due to water level fluctuations or arch effects</td>
<td>( v_{in} &lt; U_{10\text{hub}} &lt; v_{out} ) + NTM, 10-minute mean wind speed resulting in maximum thrust</td>
<td>1-year water level</td>
<td></td>
<td>ULS</td>
</tr>
<tr>
<td></td>
<td>E3</td>
<td>Horizontal load from moving ice floe</td>
<td>Ice thickness: ( t_C = t_{50} ) in open sea ( t_C = t_{limit} ) in land-locked waters</td>
<td>( v_{in} &lt; U_{10\text{hub}} &lt; v_{out} ) + ETM, 10-minute mean wind speed resulting in maximum thrust</td>
<td>50-year water level</td>
<td>For prediction of extreme loads ULS</td>
</tr>
<tr>
<td></td>
<td>E4</td>
<td>Horizontal load from moving ice floe</td>
<td>Ice thickness: ( t_C = t_{50} ) in open sea ( t_C = t_{limit} ) in land-locked waters</td>
<td>( v_{in} &lt; U_{10\text{hub}} &lt; v_{out} ) + ETM, 10-minute mean wind speed resulting in maximum thrust</td>
<td>1-year water level</td>
<td>FLS</td>
</tr>
<tr>
<td></td>
<td>E5</td>
<td>Vertical force from fast ice covers due to water level fluctuations</td>
<td>No wind load applied</td>
<td>1-year water level</td>
<td></td>
<td>ULS</td>
</tr>
<tr>
<td>Parked (standing still or idling)</td>
<td>E6</td>
<td>Pressure from hummocked ice and ice ridges</td>
<td>Turbulent wind ( U_{10\text{hub}} = U_{10,50-yr} + ) characteristic standard deviation of wind speed ( \sigma_{u,c} = 0.11 \cdot U_{10\text{hub}} )</td>
<td>1-year water level</td>
<td></td>
<td>ULS</td>
</tr>
<tr>
<td></td>
<td>E7</td>
<td>Horizontal load from moving ice floe</td>
<td>Ice thickness: ( t_C = t_{50} ) in open sea ( t_C = t_{limit} ) in land-locked waters</td>
<td>( U_{10\text{hub}} &lt; 0.7 U_{10,50-yr} ) + NTM</td>
<td>1-year water level</td>
<td>FLS</td>
</tr>
</tbody>
</table>

### Table E4 Flexural strength of sea ice

<table>
<thead>
<tr>
<th>Return period (years)</th>
<th>Flexural strength of ice, ( r_f ) (MPa)</th>
<th>Southern North Sea, Skagerrak, Kattegat</th>
<th>Southwestern Baltic Sea</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>--</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>10</td>
<td>--</td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>100</td>
<td>--</td>
<td>0.53</td>
<td>0.53</td>
</tr>
</tbody>
</table>

### Table E5 Compressive strength of sea ice

<table>
<thead>
<tr>
<th>Return period (years)</th>
<th>Compressive strength of ice, ( r_u ) (MPa)</th>
<th>Southern North Sea, Skagerrak, Kattegat</th>
<th>Southwestern Baltic Sea</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>50</td>
<td>1.6</td>
<td>1.6</td>
<td>1.9</td>
</tr>
<tr>
<td>100</td>
<td>1.7</td>
<td>2.1</td>
<td></td>
</tr>
</tbody>
</table>

509 The structure shall be designed for horizontal and vertical dynamic ice loads.

Guidance note:
For structures located in areas, where current is prevailing, the dynamic ice load may govern the design when it is combined with the concurrent wind load. This may apply to the situation when the ice breaks in the spring.

---end-of-Guidance-note---
The level of application of horizontal ice load depends on the water level and the possible presence of ice-load reducing cones. Usually a range of application levels needs to be considered.

When ice breaks up, static and dynamic interactions will take place between the structure and the ice. For structures with vertical walls, the natural vibrations of the structure will affect the break-up frequency of the ice, such that it becomes tuned to the natural frequency of the structure. This phenomenon is known as lock-in and implies that the structure becomes excited to vibrations in its natural mode shapes. The structure shall be designed to withstand the loads and load effects from dynamic ice loading associated with lock-in when tuning occurs. All contributions to damping in the structure shall be considered. Additional damping owing to pile-up of ice floes may be accounted for when it can be documented.

Guidance note:
The criterion for occurrence of tuning is

\[ U_{\text{ice}} \cdot \frac{1}{t} > 0.3 \]

where \( U_{\text{ice}} \) is the velocity of the ice floe, \( t \) is the thickness of the ice, and \( f_n \) is the natural frequency of the structure.

The loading can be assumed to follow a serrated profile in the time domain as shown in Figure 4. The maximum value of the load shall be set equal to the static horizontal ice load. After crushing of the ice, the loading is reduced to 20% of the maximum load. The load is applied with a frequency that corresponds to the natural frequency of the structure. All such frequencies that fulfil the tuning criterion shall be considered.

For conical structures, the break-up frequency of the ice shall be assumed independent of the natural vibrations of the structure. It shall be assured in the design that the frequency of the ice load is not close to the natural frequency of the structure.

Guidance note:
The frequency of the ice load can be determined as

\[ f_{\text{ice}} = \frac{U_{\text{ice}}}{L} \]

where \( U_{\text{ice}} \) is the velocity of the ice floe, and \( L \) is the crack length in the ice.

The force can be applied according to the simplified model in Figure 4, even though the failure mechanism in the ice is different for conical structures than for vertical structures.

For prediction of the crack length \( L \), the following two models are available:

1) \[ L = \frac{1}{2} \rho D, \] where \( D \) is the diameter of the cone at the water table and \( \rho \) is determined from Figure 5 as a function of \( \gamma_W D^2 / (\sigma_f t) \), in which \( \sigma_f \) is the flexural strength of the ice, \( \gamma_W \) is the unit weight of water and \( t \) is the thickness of the ice.

2) \[ L = \left( \frac{E/3}{12 \gamma_W (1 - v^2)} \right)^{0.25} \]

where \( E \) is Young’s modulus of the ice and \( v \) is Poisson’s ratio of the ice.

Neither of these formulae for prediction of \( L \) reflects the dependency of \( L \) on the velocity of the ice floe, and the formulae must therefore be used with caution. The prediction of \( L \) is in general rather uncertain, and relative wide ranges for the frequency \( f_{\text{ice}} \) must therefore be assumed in design to ensure that an adequate structural safety is achieved.

Tidal effects and storm surge effects shall be considered in evaluation of responses of interest. Higher water levels tend to increase hydrostatic loads and current loads on the structure; however, situations may exist where lower water levels will imply the larger hydrodynamic loads. Higher mean water levels also imply a decrease in the available airgap to access platforms and other structural components which depend on some minimum clearance.

Guidance note:
In general, both high water levels and low water levels shall be considered, whichever is most unfavourable, when water level loads are predicted.

For prediction of extreme responses, there are thus two 50-year water levels to consider, viz. a low 50-year water level and a high 50-year water level. Situations may exist where a water level between these two 50-year levels will produce the most unfavourable responses.

When a wind turbine structure is to be designed for installation on a site which may be subject to an earthquake,
the structure shall be designed to withstand the earthquake loads. Response spectra in terms of so-called pseudo response spectra may be used for this purpose.

Guidance note:
Pseudo response spectra for a structure are defined for displacement, velocity, and acceleration. For a given damping ratio $\gamma$ and angular frequency $\omega$, the pseudo response spectrum $S$ gives the maximum value of the response in question over the duration of the response. This can be calculated from the ground acceleration history by Duhamel’s integral. The following pseudo response spectra are considered:
- $S_D$, response spectral displacement
- $S_V$, response spectral velocity
- $S_A$, response spectral acceleration

For a lightly damped structure, the following approximate relationships apply, $S_A \approx SD$ and $S_V \approx \omega SD$, such that it suffices to establish the acceleration spectrum and then use this to establish the other two spectra.

It is important to analyse the wind turbine structure for the earthquake-induced accelerations in one vertical and two horizontal directions. It usually suffices to reduce the analysis in two horizontal directions to an analysis in one horizontal direction, due to the symmetry of the dynamic system. The vertical acceleration may lead to buckling in the tower. Since there is not expected to be much dynamics involved with the vertical motion, the tower may be analysed with respect to buckling for the load induced by the maximum vertical acceleration caused by the earthquake. However, normally the only apparent buckling is that associated with the ground motion in the two horizontal directions, and the buckling analysis for the vertical motion may then not be relevant. For detailed buckling analysis for the tower, reference is made to DNV-OS-C101 and NORSOK.

For analysis of the horizontal motions and accelerations, the wind turbine can be represented by a concentrated mass on top of a vertical rod, and the response spectra can be used directly to determine the horizontal loads set up by the ground motions. For a typical wind turbine, the concentrated mass can be taken as the mass of the nacelle, including the rotor mass, plus $\frac{1}{4}$ of the tower mass.

---end---of---Guidance---note---

702 When a wind turbine structure is to be installed in areas which may be subject to tsunamis set up by earthquakes, the load effect of the tsunami on the structure shall be considered.

Guidance note:
Tsunamis are seismic sea waves. To account for load effects of tsunamis on wind turbine structures in shallow waters, an acceptable approach is to calculate the loads for the maximum sea wave that can exist on the site for the given water depth.

---end---of---Guidance---note---

E 800 Marine growth

801 Marine growth shall be taken into account by increasing the outer diameter of the structural member in question in the calculations of hydrodynamic wave and current loads. The thickness of the marine growth depends on the depth below sea level and the orientation of the structural component. The thickness shall be assessed based on relevant local experience and existing measurements. Site-specific studies may be necessary in order to establish the likely thickness and depth dependence of the growth.

Guidance note:
Unless data indicate otherwise, the following marine growth profile may be used for design in Norwegian and UK waters:

<table>
<thead>
<tr>
<th>Depth below MWL (m)</th>
<th>Norwegian Sea (59° to 72°N)</th>
<th>Northern North Sea (56° to 59°N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>–2 to 40</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>&gt; 40</td>
<td>50</td>
<td>30</td>
</tr>
</tbody>
</table>

Somewhat higher values, up to 150 mm between sea level and LAT – 10 m, may be seen in the Southern North Sea.

Offshore central and southern California, marine growth thicknesses of 200 mm are common.

In the Gulf of Mexico, the marine growth thickness may be taken as 38 mm between LAT + 3 m and 50 m depth, unless site-specific data and studies indicate otherwise.

Offshore West Africa, the marine growth thickness may be taken as 100 mm between LAT and 50 m depth and as 300 mm in the splash zone above LAT, unless data indicate otherwise.

The outer diameter of a structural member subject to marine growth shall be increased by twice the recommended thickness at the location in question.

The type of marine growth may have an impact on the values of the hydrodynamic coefficients that are used in the calculations of hydrodynamic loads from waves and current.

---end---of---Guidance---note---

802 Due to the uncertainties involved in the assumptions regarding the marine growth on a structure, a strategy for inspection and possible removal of the marine growth should be planned as part of the design of the structure. When such a strategy is planned, the inspection frequency, the inspection method and the criteria for growth removal shall be based on the impact of the marine growth on the safety of the structure and on the extent of experience with marine growth under the specific conditions prevailing at the site.

E 900 Scour

901 Scour is the result of erosion of soil particles at and near a foundation and is caused by waves and current. Scour is a load effect and may have an impact on the geotechnical capacity of a foundation and thereby on the structural response that governs the ultimate and fatigue load effects in structural components.

902 Means to prevent scour and requirements to such means are given in Sec.10 B300.

E 1000 Transportation loads and installation loads

1001 Criteria shall be defined for acceptable external conditions during transportation, installation and dismantling of offshore wind turbine structures and their foundations. This includes external conditions during installation, dismantling and replacement of wind turbine rotors and nacelles as far as the involved loads on the support structures and foundations are concerned. Based on the applied working procedures, on the vessels used and on the duration of the operation in question, acceptable limits for the following environmental properties shall be specified:

- wind speed
- wave height and wave crest
- water level
- current
- ice.

1002 It shall be documented that lifting fittings mounted on a structure subject to lifting is shaped and handled in such a manner that the structure will not be damaged during lifting under the specified external conditions.

1003 DNV Rules for Planning and Execution of Marine Operations apply.

F. Combination of Environmental Loads

F 100 General

101 This section gives requirements for combination of environmental loads in the operational condition.

102 The requirements refer to characteristic wind turbine
loads based on an investigation of the load cases specified in Tables E1 and E3.

103 For design against the ULS, the characteristic environmental load effect shall be taken as the 98% quantile in the distribution of the annual maximum environmental load effect, i.e., it is the load effect whose return period is 50 years, and whose associated probability of exceedance is 0.02. When the load effect is the result of the simultaneous occurrence of two or more environmental load processes, these requirements to the characteristic load effect apply to the combined load effect from the concurrently acting load processes. The subsequent items specify how concurrently acting environmental loads can be combined to arrive at the required characteristic combined load effect.

104 Environmental loads are loads exerted by the environments that surround the structure. Typical environments are wind, waves, current, and ice, but other environments may also be thought of such as temperature and ship traffic. Each environment is usually characterized by an intensity parameter. Wind is usually characterized by the 10-minute mean wind speed, waves by the significant wave height, current by the mean current, and ice by the ice thickness.

F 200 Environmental states

201 Environmental states are defined as short-term environmental conditions of approximately constant intensity parameters. The typical duration of an environmental state is 10 minutes or one hour. The long-term variability of multiple intensity parameters representative of multiple, concurrently active load environments can be represented by a scattergram or by a joint probability distribution function including information about load direction.

F 300 Environmental contours

301 An environmental contour is a contour drawn through a set of environmental states on a scattergram or in a joint probability density plot for the intensity parameters of concurrently active environmental processes. The environmental states defined by the contour are states whose common quality is that the probability of a more rare environmental state is $p = \frac{T_S}{T_R}$ where $T_S$ is the duration of the environmental state and $T_R$ is a specified return period.

Guidance note:
The idea of the environmental contour is that the environmental state whose return period is $T_R$ is located somewhere along the environmental contour defined based on $T_R$. When only one environmental process is active, the environmental contour reduces to a point on a one-dimensional probability density plot for the intensity parameter of the process in question, and the value of the intensity in this point becomes equal to the value whose return period is $T_R$.

For an offshore wind turbine, the wind process and the wave process are two typical concurrent environmental processes. The 10-minute mean wind speed $U_{10}$ represents the intensity of the wind process, and the significant wave height $H_S$ represents the intensity of the wave process. The joint probability distribution of $U_{10}$ and $H_S$ can be represented in terms of the cumulative distribution function $F_{U_{10}}$ for $U_{10}$ and the cumulative distribution function $F_{H_S}$ for $H_S$ conditional on $U_{10}$. A first-order approximation to the environmental contour for return period $T_R$ can be obtained as the infinite number of solutions ($U_{10}, H_S$) to the following equation

$$\sqrt{\left(\Phi^{-1}(F_{U_{10}}(U_{10}))\right)^2 + \left(\Phi^{-1}(F_{H_S}(H_S))\right)^2} = \Phi^{-1}(1-\frac{T_S}{T_R})$$

valid for $T_S < T_R$, in which $\Phi^{-1}$ denotes the inverse of the standard normal cumulative distribution function.

The environmental contour whose associated return period is 50 years is useful for finding the 50-year load effect in the wind turbine structure when the assumption can be made that the 50-year load effect occurs during the 50-year environmental state. When this assumption can be made, the 50-year load effect can be estimated by the expected value of the maximum load effect that can be found among the environmental states of duration $T_S$ along the 50-year environmental contour.

The environmental state is characterized by a specific duration, e.g., one hour. Whenever data for $U_{10}$ and $H_S$ refer to reference periods which are different from this duration, appropriate conversions of these data to the specified environmental state duration must be carried out.

F 400 Combined load and load effect due to wind load and wave load

401 In a short-term period with a combination of waves and fluctuating wind, the individual variations of the two load processes about their respective means can be assumed uncorrelated. This assumption can be made regardless of the intensities and directions of the load processes, and regardless of possible correlations between intensities and between directions.

402 Two methods for combination of wind load and wave load are given in this standard:

— Linear combination of wind load and wave load, or of wind load effects and wave load effects, see F500.
— Combination of wind load and wave load by simulation, see F600.

403 The load combination methods presented in F500 and F600 and the load combinations specified in F700 are expressed in terms of combinations of wind load effects, wave load effects and possible other load effects. This corresponds to design according to Approach (1) in Sec.2 E202. For design according to Approach (2) in Sec.2 E202, the term “load effect” in F500, F600 and F700 shall be interpreted as “load” such that “design loads” are produced by the prescribed combination procedures rather than “design load effects”. Following Approach (2), the design load effects then result from structural analyses for these design loads.

F 500 Linear combinations of wind load and wave load

501 The combined load effect in the structure due to concurrent wind and wave loads may be calculated by combining the separately calculated wind load effect and the separately calculated wave load effect by linear superposition. This method may be applied to concept evaluations and in some cases also to load calculations for final design, for example in shallow water or when it can be demonstrated that there is no particular dynamic effect from waves, wind, ice or combinations thereof. According to the linear combination format presented in Sec.2, the design combined load effect is expressed as

$$S_d = \gamma_1 S_{wind,k} + \gamma_2 S_{wave,k}$$

in which $S_{wind,k}$ denotes the characteristic wind load effect and $S_{wave,k}$ denotes the characteristic wave load effect. It is a prerequisite for using this approach to determine the design combined load effect that the separately calculated value of the characteristic wave load effect $S_{wind,k}$ is obtained for realistic assumptions about the equivalent damping that results from the structural damping and the aerodynamic damping. The equivalent damping depends on the following conditions related to the wind turbine and the wind load on the turbine:

— whether the wind turbine is exposed to wind or not
— whether the wind turbine is in operation or is parked
— whether the wind turbine is a pitch-regulated turbine or a stall-regulated turbine
— the direction of the wind loading relative to the direction of the wave loading.

Correct assumptions for the wind turbine and the wind load

---end---of---Guidance---note---
shall be made according to this list. The equivalent damping shall be determined in correspondence with these assumptions. Structural analyses by an adequate structural analysis model and based on this equivalent damping shall then be used to determine the characteristic wave load effect $S_{\text{wave,k}}$. The damping from the wind turbine should preferably be calculated directly in an integrated model.

**Guidance note:**

When the characteristic load effect $S_{\text{wave,k}}$ is defined as the load effect whose return period is $T_R$, the determination of $S_{\text{wave,k}}$ as a quantile in the distribution of the annual maximum load effect may prove cumbersome and involve a large number of structural analyses to be carried out before contributions to this distribution from all important sea states have been included.

When the assumption can be made that $S_{\text{wave,k}}$ occurs during the particular sea state of duration $T_S$ whose significant wave height $H_S$ has a return period equal to $T_R$, then $S_{\text{wave,k}}$ may be estimated by the expected value of the maximum load effect during this sea state, and the analytical efforts needed may become considerably reduced. The assumption that $S_{\text{wave,k}}$ occurs in the sea state whose return period is $T_R$ is often reasonable, unless sea states exist for which the structure becomes more dynamically excited than by this particular sea state, for example sea states involving wave trains whose periods are close to integer multiples of the natural period of the structure.

When the structural analysis involves executions of a number of simulations of the maximum load effect that occurs during the sea state whose significant wave height has a return period $T_R$, then $S_{\text{wave,k}}$ shall be estimated by the mean of these simulated maximum load effects.

The wind loads in the wind direction during idling and with the yaw system in function will be quite small and will consist mainly of drag on the tower and the nacelle cover. During this condition it is implied that the blades are pitched such that the blade profiles point in the direction up against the wind or in the wind direction. The largest wind loads in this condition will be the blade loads that act perpendicular to the wind direction.

---end-of-Guidance-note---

**F 600 Combination of wind load and wave load by simulation**

601 The combined load effect in the structure due to concurrent wind and wave loads may alternatively be calculated by direct simulation. This approach is based on structural analyses in the time domain for simultaneously applied simulated time series of the wind load and the wave load. By this approach, simulated time series of the combined load effect results, from which the characteristic combined load effect $S_k$ is interpreted.

**Guidance note:**

The approach requires that a global structural analysis model is established, e.g. in the form of a beam-element based frame model, to which load series from several simultaneously acting load processes can be applied. Although this is here exemplified for two concurrently acting load processes, viz. wind loads and wave loads, this can be generalised to include also other concurrent load processes.

When the characteristic load effect $S_k$ is defined as the load effect whose return period is $T_R$, the determination of $S_k$ as a quantile in the distribution of the annual maximum load effect may prove cumbersome and involve a large number of structural analyses to be carried out before contributions to this distribution from all important environmental states have been included.

When the assumption can be made that $S_k$ occurs during an environmental state of duration $T_S$ associated with a return period $T_R$, then $S_k$ may be estimated by the expected value of the maximum load effect during such an environmental state, and the analytical efforts needed may become considerably reduced. Under this assumption, $S_k$ can be estimated by the expected value of the maximum load effect that can be found among the environmental states on the environmental contour whose associated return period is $T_R$.

To simulate one realisation of the maximum load effect along the environmental contour whose associated return period is $T_R$, one structural simulation analysis is carried out for each environmental state along the environmental contour and one maximum load effect results for each one of these states. The same seed needs to be applied for each environmental state investigated this way. A following search along the contour will identify the sought-after realisation of the maximum load effect. In practice, it will suffice to carry out structural simulation analyses only for a limited number of environmental states along a part of the environmental contour. The procedure is repeated for a number of different seeds, and a corresponding number of maximum load effect realisations are obtained. The sought-after characteristic load effect $S_k$ is estimated by the mean of these simulated maximum load effects.

When dynamic simulations utilising a structural dynamics model are used to calculate load effects, the total period of load effect data simulated shall be long enough to ensure statistical reliability of the estimate of the sought-after maximum load effect. At least six ten-minute stochastic realisations (or a continuous 60-minute period) shall be required for each 10-minute mean, hub-height wind speed considered in the simulations. Since the initial conditions used for the dynamic simulations typically have an effect on the load statistics during the beginning of the simulation period, the first 5 seconds of data (or longer if necessary) shall be eliminated from consideration in any analysis interval involving turbulent wind input.

The wind loads in the wind direction during idling and with the yaw system in function will be quite small and will consist mainly of drag on the tower and the nacelle cover. During this condition it is implied that the blades are pitched such that the blade profiles point in the direction up against the wind or in the wind direction. The largest wind loads in this condition will be the blade loads that act perpendicular to the wind direction.

The wave field must be simulated by applying a valid wave theory according to Sec.3. Simulation using linear wave theory (Airy theory) in shallow waters may significantly underestimate the wave loads.

---end-of-Guidance-note---

**F 700 Basic load cases**

701 When information is not available to produce the required characteristic combined load effect directly, the required characteristic combined load effect can be obtained by combining the individual characteristic load effects due to the respective individual environmental load types. Table F1 specifies a list of load cases that shall be considered when this approach is followed, thereby to ensure that the required characteristic combined load effect, defined as the combined load effect with a return period of 50 years, is obtained for the design. Each load case is defined as the combination of two or more environmental load types. For each load type in the load combination of a particular load case, the table specifies the characteristic value of the corresponding, separately determined load effect. The characteristic value is specified in terms of the return period.
**Table F1 Proposed load combinations for load calculations according to item 501**

<table>
<thead>
<tr>
<th>Limit state</th>
<th>Load combination</th>
<th>Wind</th>
<th>Waves</th>
<th>Current</th>
<th>Ice</th>
<th>Water level</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULS</td>
<td>1</td>
<td>50 years</td>
<td>5 years</td>
<td>5 years</td>
<td>50 years</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5 years</td>
<td>50 years</td>
<td>5 years</td>
<td>50 years</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5 years</td>
<td>5 years</td>
<td>50 years</td>
<td>50 years</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5 years</td>
<td>5 years</td>
<td>50 years</td>
<td>Mean water level</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>50 years</td>
<td>5 years</td>
<td>50 years</td>
<td>Mean water level</td>
<td></td>
</tr>
</tbody>
</table>

**Guidance note:**
Table F1 forms the basis for determination of the design combined load effect according to the linear combination format in item 501. Table F1 refers to a characteristic combined load effect with a return period of 50 years and shall be used in conjunction with load factors specified in Sec.5.

When it can be assumed that a load effect whose return period is $T_R$ occurs during the environmental state whose return period is $T_E$, then the tabulated recurrence values in Table F1 can be used as the return period for the load intensity parameter for the load type that causes the particular load effect in question. With this interpretation, Table F1 may be used as the basis for determination of the characteristic combined load effect by linear combination, in which case the analyses for the particular load cases of Table F1 replace the more cumbersome searches for the characteristic load effect on environmental contours as described in item 301.

When the direction of the loading is an important issue, it may be of particular relevance to maintain that the return periods of Table F1 refer to load effects rather than to load intensities.

For determination of the 50-year water level, two values shall be considered, viz. the high water level which is the 98% quantile in the distribution of the annual maximum water level and the low water level which is the 2% quantile in the distribution of the annual minimum water level. For each load combination in Table F1, the most unfavourable value among the two shall be used for the 50-year water level.

---end-of-Guidance-note---

**702** Every time a load combination is investigated, which contains a load effect contribution from wind load, the load combination shall be analysed for two different assumptions about the state of the wind turbine:

- wind turbine in operation (power production)
- parked wind turbine (idling or standing still)

The largest load effect resulting from the corresponding two analyses shall be used for design.

**Guidance note:**
It will usually not be clear beforehand which of the two assumptions will produce the largest load effect, even if the blades of the parked turbine are put in the braking position to minimise the wind loads.

In a ULS situation where the characteristic wind load effect is to be taken as the 50-year wind load effect, the calculation for the wind turbine in operation will correspond to calculation of the load effect for a wind climate whose intensity is somewhere between the cut-in wind speed and the cut-out wind speed. For stall-regulated wind turbines, the cut-out wind speed dominates the extreme operational forces. For pitch-regulated wind turbines, the extreme operational forces occur for wind climates whose intensities are near the 10-minute mean wind speed where regulation starts, typically 13 to 14 m/s.

For the parked wind turbine, the calculation in a ULS situation will correspond to the calculation of the 50-year wind load effect as if the wind turbine was in the parked condition during its entire design life.

---end-of-Guidance-note---

**703** When it can be established as unlikely that the wind turbine will be in operation during the wave, ice, current and/or water level conditions that form part of a load combination under investigation, the requirement of item 702 to analyse the load combination for the assumption of wind turbine in operation may be too strict. When such an unlikely situation is encountered, the fulfilment of this requirement of item 702 may be deviated from in the following manner: The load combination under investigation shall still be analysed for the assumption of wind turbine in operation; however, the requirements to the return periods of the wave, ice, current and water level conditions that the wind load effect is combined with may be relaxed and set lower than the values specified in Table F1 for the particular load combination, as long as it can be documented that the return period for the resulting combined load effect does not fall below 50 years.

**Guidance note:**
When the fetch is limited and wind and waves have the same direction in severe storms, then the wind climate intensity is likely to reach its extreme maximum at the same time as the wave climate intensity reaches its extreme maximum, and it may be unlikely to see wind speeds below the cut-out wind speed during the presence of the 50-year wave climate. Likewise, it may be unlikely to see the 50-year wave climate during operation of the wind turbine.

When the topography, e.g. in terms of a nearby coastline, forces the extreme maximum of the wind climate to take place at a different time than the extreme maximum of the wave climate intensity, then it may be likely to see wind speeds below the cut-out wind speed during the presence of the 50-year wave climate. Likewise, it may be likely to see the 50-year wave climate during operation of the wind turbine.

When a large fetch is present, there may be a phase difference between the occurrence of the extreme maximum of the wind climate intensity and the extreme maximum of the wave climate intensity, and it may be likely to see wind speeds below the cut-out wind speed during the presence of the 50-year wave climate. Likewise, it may be likely to see the 50-year wave climate during operation of the wind turbine.

---end-of-Guidance-note---

**704** Every time a load case is investigated, which contains a load effect contribution from ice loads, loads from moving ice shall be considered as well as loads from fast-frozen ice and loads due to temperature fluctuations in the ice.

**705** Load combination No. 5 in Table F1 is of relevance for structures in waters which are covered by ice every year. Investigations for Load combination No. 5 in Table F1 can be waived for structures in waters which are covered by ice less frequently than every year.

**706** When a load case is investigated, which contains a load effect contribution from wave loads, loads from wave trains in less severe sea states than the sea state of the specified return period shall be considered if these loads produce a larger load effect than the sea state of the specified return period.

**Guidance note:**
Dynamic effects may cause less severe sea states than the sea state of the specified return period to produce more severe load effects, e.g. if these sea states imply wave trains arriving at the wind turbine structure with frequencies which coincide with a frequency of one of the natural vibration modes of the structure.

---end-of-Guidance-note---
The possibility that waves break at the wind turbine structure may play a role in this context and should be included in the considerations.

707 Co-directionality of wind and waves may be assumed for calculation of the wave loads acting on the support structure for all design cases except those corresponding to the wind turbine in a parked (standstill or idling) design situation. The misalignment of wind and wave directions in the parked situation is to be accounted for.

Guidance note:
Allowance for short term deviations from the mean wind direction in the parked situation should be made by assuming a constant yaw misalignment. It is recommended to apply a yaw misalignment of ±15°.
In areas where swell may be expected, special attention needs to be given to swell, which has a low correlation with wind speed and wind direction.

708 The multi-directionality of the wind and the waves may in some cases have an important influence on the loads acting on the support structure, depending primarily on whether the structure is axisymmetric or not. For some design load cases the load calculations may be undertaken by assuming that the wind and the waves are acting co-directionally from a single, worst case direction.

709 Characteristic extreme wind load effects are in this standard defined as wind load effects with a 50-year return period. 5-year wind load effects form part of some load combinations. When only wind load effects with a 100-year return period are available, the 100-year wind load effects have to be converted to 50-year values. This can be done by multiplication by a conversion factor. Likewise, to the extent that 5-year wind load effects are needed in load combinations and only 50-year values are available, the 50-year values have to be converted to 5-year values for use in these load combinations.

Guidance note:
The ratio $F_{\text{wind},100}/F_{\text{wind},50}$ between the 100- and 50-year wind load effects depends on the coefficient of variation in the distribution of the annual maximum wind load and can be used as a conversion factor to achieve the 50-year wind load effect $F_{\text{wind},50}$ in cases where only the 100-year value $F_{\text{wind},100}$ is available. Unless data indicate otherwise, the ratio $F_{\text{wind},100}/F_{\text{wind},50}$ can be taken from Table F2. Table F2 also gives the ratio $F_{\text{wind},50}/F_{\text{wind},50}$ between the 5-year wind load effect $F_{\text{wind},5}$ and the 50-year wind load effect $F_{\text{wind},50}$. This is useful in some load combinations that require the 5-year wind load effect. Table F2 is based on an assumption of a Gumbel-distributed annual maximum wind load effect.

<table>
<thead>
<tr>
<th>Table F2 Conversion factors for wind load effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient of variation of annual maximum wind load effect (%)</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>35</td>
</tr>
</tbody>
</table>

The conversion factors are given as functions of the coefficient of variation of the annual maximum wind load effect. There is no requirement in this standard to document this coefficient of variation.

Note that use of the conversion factor $F_{\text{wind},5}/F_{\text{wind},50}$ given in Table F2 to obtain the 5-year wind load effect from the 50-year wind load effect will be nonconservative if the distribution of the annual maximum wind load effect is not a Gumbel distribution and has a less heavy upper tail than the Gumbel distribution.

Note also that for a particular wind turbine, the coefficient of variation of the annual maximum wind load effect may be different depending on whether the wind turbine is located on an offshore location or on an onshore location. For offshore wind turbines the coefficient of variation is assumed to have a value of approximately 20 to 30%.

800 Transient load cases

801 Actuation loads from the operation and control of the wind turbine produce transient wind loads on the wind turbine structure. The following events produce transient loads and shall be considered:

- start up from stand-still or from idling
- normal shutdown
- emergency shutdown
- normal fault events: faults in control system and loss of electrical network connection
- abnormal fault events: faults in protection system and electrical systems
- yawing.

802 The characteristic transient wind load effect shall be calculated as the maximum load effect during a 10-minute period whose wind intensity shall be taken as the most unfavourable 10-minute mean wind speed in the range between the cut-in wind speed and the cut-out wind speed. In order to establish the most critical wind speed, i.e. the wind speed that produce the most severe load during the transient loading, gusts, turbulence, shift in wind direction, wind shear, timing of fault situations, and grid loss in connection with deterministic gusts shall be considered.

803 The characteristic transient wind load effect shall be combined with the 10-year wave load effect. The combination may be worked out according to the linear combination format to produce the design load effect from the separately calculated characteristic wind load effect and wave load effect. The combination may alternatively be worked out by direct simulation of the characteristic combined load effect in a structural analysis in the time domain for simultaneously applied time series of the wind load and the wave load.

804 When transient wind loads are combined with wave loads, misalignment between wind and waves shall be considered. For non-axisymmetric support structures, the most unfavourable wind load direction and wave load direction shall be assumed.

900 Load combination for the fatigue limit state

901 For analyses of the fatigue limit state, a characteristic load effect distribution shall be applied which is the expected load effect distribution over the design life. The expected load effect distribution is a distribution of stress ranges owing to load fluctuations and contains contributions from wind, waves, current, ice and water level as well as from possible other sources. The expected load effect distribution shall include contributions from

- wind turbine in operation
- parked wind turbine (idling and standing still)
- start up
- normal shutdown
- control, protection and system faults, including loss of electrical network connection
- transport and assembly prior to putting the wind turbine to service
- maintenance and repair during the service life.

For fatigue analysis of a foundation pile, the characteristic load effect distribution shall include the history of stress ranges

--- end of Guidance note ---
associated with the driving of the pile prior to installing the wind turbine and putting it to service.

**Guidance note:**
The characteristic load effect distribution can be represented as a histogram of stress ranges, i.e., the number of constant-range stress cycles is given for each stress range in a sufficiently fine discretisation of the stress ranges. The individual contributions to this load effect distribution from different sources can be represented the same way.

For contributions to the expected load effect distribution that are consecutive in time or otherwise mutually exclusive, such as the contribution from the transportation and installation phase and the contribution from the in-service phase, the fatigue damage due to each contribution can be calculated separately and added together without introducing any particular prior combination of the contributions to the distribution. Alternatively, the different contributions can be combined to form the expected load effect distribution prior to the fatigue damage calculation by adding together the number of stress cycles at each defined discrete stress range from the respective underlying distributions.

When the expected load effect distribution contains load effects which result from two or more concurrently acting load processes, such as a wind load and a concurrent wave load, the respective underlying stress range distributions for separate wind load effect and separate wave load effect need to be adequately combined prior to the calculation of the fatigue damage. When wind loads and wave loads act concurrently, it can be expected that their combined load effect distribution will contain somewhat higher stress ranges than those of the underlying individual wave load effect and wind load effect distributions. The following idealised approach to combination of the two underlying stress range distributions will usually be conservative: The number of stress cycles of the combined load effect distribution is assumed equal to the number of stress cycles in that of the underlying distributions (i.e. the distribution of wind stress cycles and the distribution of wave stress cycles) which contains the highest number of cycles. Then the largest stress range in the wind load effect distribution is combined by the largest stress range in the wave load effect distribution by simple superposition, the second largest stress ranges are combined analogously, the third largest stress ranges the same, and so on.

There may be some ambiguity involved with how concurrent wave load effects and wind load effects shall be combined to form the resulting load effect distribution for fatigue damage prediction. The proposed method of combination is idealised and implies an assumption of colinear wind and waves. However, when combining wind load effects and wave load effects for fatigue, consideration of the distribution of the wind direction, the distribution of the wave direction and the distribution of wave stress cycles which contains the highest number of cycles. Then the largest stress range in the wind load effect distribution is combined by the largest stress range in the wave load effect distribution by simple superposition, the second largest stress ranges are combined analogously, the third largest stress ranges the same, and so on.

When combining wind load effects and wave load effects for fatigue, consideration of the distribution of the wind direction, the distribution of the wave direction and the distribution of wave stress cycles which contains the highest number of cycles. Then the largest stress range in the wind load effect distribution is combined by the largest stress range in the wave load effect distribution by simple superposition, the second largest stress ranges are combined analogously, the third largest stress ranges the same, and so on.

When combining wind load effects and wave load effects for fatigue, consideration of the distribution of the wind direction, the distribution of the wave direction and the distribution of wave stress cycles which contains the highest number of cycles. Then the largest stress range in the wind load effect distribution is combined by the largest stress range in the wave load effect distribution by simple superposition, the second largest stress ranges are combined analogously, the third largest stress ranges the same, and so on.

In the final design stage theoretical methods for prediction of important responses of any novel system should be verified by appropriate model tests. Full scale tests may also be appropriate, in particular for large wind farms.

**G. Load Effect Analysis**

**G 100 General**

101 Load effects, in terms of motions, displacements, and internal forces and stresses in the wind turbine structure, shall be determined with due regard for:

- their spatial and temporal nature including:
  - possible non-linearities of the load
  - dynamic character of the response
- the relevant limit states for design checks
- the desired accuracy in the relevant design phase.

102 Permanent loads, functional loads, deformation loads, and fire loads can generally be treated by static methods of analysis. Environmental loads (by wind, waves, current, ice and earthquake) and certain accidental loads (by impacts and explosions) may require dynamic analysis. Inertia and damping forces are important when the periods of steady-state loads are close to natural periods or when transient loads occur.

103 In general, three frequency bands need to be considered for offshore structures:

<table>
<thead>
<tr>
<th>Frequency Band</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High frequency (HF)</td>
<td>Rigid body natural periods below the dominating wave periods, e.g. ringing and springing responses.</td>
</tr>
<tr>
<td>Wave frequency (WF)</td>
<td>Typically wave periods in the range 4 to 25 seconds. Applicable to all offshore structures located in the wave active zone.</td>
</tr>
<tr>
<td>Low frequency (LF)</td>
<td>This frequency band relates to slowly varying responses with natural periods beyond those of the dominating wave energy (typically slowly varying motions).</td>
</tr>
</tbody>
</table>

104 For fully restrained structures a static or dynamic wind-wave-structure-foundation analysis is required.
105 Uncertainties in the analysis model are expected to be taken care of by the load and resistance factors. If uncertainties are particularly high, conservative assumptions shall be made.
106 If analytical models are particularly uncertain, the sensitivity of the models and the parameters utilised in the models shall be examined. If geometric deviations or imperfections have a significant effect on load effects, conservative geometric parameters shall be used in the calculation.
107 In the final design stage theoretical methods for prediction of important responses of any novel system should be verified by appropriate model tests. Full scale tests may also be appropriate, in particular for large wind farms.
108 Earthquake loads need only be considered for restrained modes of behaviour.

**G 200 Global motion analysis**

201 The purpose of a motion analysis is to determine displacements, accelerations, velocities and hydrodynamic pressures relevant for the loading on the wind turbine support structure. Excitation by waves, current and wind should be considered.

**G 300 Load effects in structures and foundation soils**

301 Displacements, forces and stresses in the structure and foundation, shall be determined for relevant combinations of loads by means of recognised methods, which take account of the variation of loads in time and space, the motions of the structure and the limit state which shall be verified. Characteristic values of the load effects shall be determined.

302 Non-linear and dynamic effects associated with loads and structural response, shall be accounted for whenever relevant.

303 The stochastic nature of environmental loads shall be adequately accounted for.

**H. Deformation Loads**

**H 100 General**

101 Deformation loads are loads caused by inflicted deformations such as:

- temperature loads
- built-in deformations
- settlement of foundations.
H 200  Temperature loads

201  Structures shall be designed for the most extreme temperature differences they may be exposed to.

202  The ambient sea or air temperature shall be calculated as the extreme value whose return period is 50 years.

203  Structures shall be designed for a solar radiation intensity of 1 000 W/m².

H 300  Settlements

301  Settlement of the support structure and its foundation due to vertical deformations of the supporting soils shall be considered. This includes consideration of differential settlements.
SECTION 5
LOAD AND RESISTANCE FACTORS

A. Load Factors

A 100 Load factors for the ULS

101 Table A1 provides two sets of load factors to be used when characteristic loads or load effects from different load categories are combined to form the design load or the design load effect for use in design. For analysis of the ULS, the set denoted (a) shall be used when the characteristic environmental load or load effect is established as the 98% quantile in the distribution of the annual maximum load or load effect. For analyses of the ULS for abnormal wind load cases, the set denoted (b) shall be users.

The load factors apply in the operational condition as well as in the temporary condition. The load factors are generally applicable for all types of support structures and foundations and they apply to design of support structures and foundations which qualify for design to the normal safety class.

Table A1 Load factors $\gamma_f$ for the ULS

<table>
<thead>
<tr>
<th>Load factor set</th>
<th>Limit state</th>
<th>Load categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) ULS</td>
<td></td>
<td>$\psi$ $\psi$ 1.35 1.0</td>
</tr>
<tr>
<td>(b) ULS for abnormal wind load cases</td>
<td></td>
<td>$\psi$ $\psi$ 1.1 1.0</td>
</tr>
</tbody>
</table>

Load categories are:
- G = permanent load
- Q = variable functional load, normally relevant only for design against ship impacts and for local design of platforms
- E = environmental load
- D = deformation load.

For description of load categories, see Sec.4.

Guidance note:
Load factor set (a) is relevant for any design in the ULS except for designs for abnormal load cases.

---end---of---Guidance---note---

102 The characteristic environmental load effect (E), which forms part of the load combinations of Table A1, is to be taken as the characteristic combined load effect, determined according to Sec.4, and representing the load effect that results from two or more concurrently acting load processes.

103 For permanent loads (G) and variable functional loads (Q), the load factor in the ULS shall normally be taken as $\psi = 1.0$ for load combinations (a) and (b).

104 When a permanent load (G) or a variable functional load (Q) is a favourable load, then a load factor $\psi = 0.9$ shall be applied for this load in combinations (a) and (b) of Table A1 instead of the value of 1.0 otherwise required. The only exception from this applies to favourable loads from foundation soils in geotechnical engineering problems, for which a load factor $\psi = 1.0$ shall be applied. A load is a favourable load when a reduced value of the load leads to an increased load effect in the structure.

Guidance note:
One example of a favourable load is the weight of a soil volume which has a stabilising effect in an overturning problem for a foundation.

Another example is pretension and gravity loads that significantly relieve the total load response.

---end---of---Guidance---note---

202 The load factor $\gamma_f$ in the FLS is 1.0 for all load categories.

A 300 Load factor for the SLS

301 For analysis of the SLS, the load factor $\gamma_f$ is 1.0 for all load categories, both for temporary and operational design conditions.

B. Resistance Factors

B 100 Resistance factors for the ULS

101 Resistance factors for the ULS are given in the relevant sections for design in the ULS. These resistance factors apply to design of support structures and foundations which qualify for design to normal safety class.

102 For design of support structures and foundations to high safety class, the same resistance factors as those required for design to normal safety class can be applied, provided the load factors for environmental loads are taken in accordance with A105.

B 200 Resistance factors for the FLS

201 Resistance factors for the FLS are given in the relevant sections for design in the FLS.

B 300 Resistance factors for the SLS

301 The material factor $\gamma_m$ for the SLS shall be taken as 1.0.
A. Selection of Steel Materials and Inspection Principles

A 100 General

101 This section describes the selection of steel materials and inspection principles to be applied in design and construction of offshore steel structures.

A 200 Design temperatures

201 The design temperature is a reference temperature used as a criterion for the selection of steel grades. The design temperature shall be based on lowest daily mean temperature.

202 In all cases where the service temperature is reduced by localised cryogenic storage or other cooling conditions, such factors shall be taken into account in establishing the minimum design temperatures.

203 The design temperature for floating units shall not exceed the lowest service temperature of the steel as defined for various structural parts.

204 External structures above the lowest waterline shall be designed with service temperatures equal to the lowest daily mean temperature for the area(s) where the unit is to operate.

205 Further details regarding design temperature for different structural elements are given in the object standards.

206 External structures below the lowest waterline need not be designed for service temperatures lower than 0°C. A higher service temperature may be accepted if adequate supporting data can be presented relative to the lowest average temperature applicable to the relevant actual water depths.

207 Internal structures in way of permanently heated rooms need not be designed for service temperatures lower than 0°C.

208 For fixed units, materials in structures above the lowest astronomical tide (LAT) shall be designed for service temperatures down to the lowest daily mean temperature.

209 Materials in structures below the lowest astronomical tide (LAT) need not be designed for service temperatures lower than 0°C. A higher service temperature may be accepted if adequate supporting data can be presented relative to the lowest daily mean temperature applicable for the relevant water depths.

A 300 Structural category

301 The purpose of the structural categorisation is to assure adequate material and suitable inspection to avoid brittle fracture. The purpose of inspection is also to remove defects that may grow into fatigue cracks during service life.

Guidance note:

Conditions that may result in brittle fracture are to be avoided. Brittle fracture may occur under a combination of:
- presence of sharp defects such as cracks
- high tensile stress in direction normal to planar defect(s)
- material with low fracture toughness.

Sharp cracks resulting from fabrication may be found by inspection and repaired. Fatigue cracks may also be discovered during service life by inspection.

High stresses in a component may occur due to welding. A complex connection is likely to provide more restraint and larger residual stress than a simple one. This residual stress may be partly removed by post weld heat treatment if necessary. Also a complex connection shows a more three-dimensional stress state due to external loading than simple connections. This stress state may provide basis for a cleavage fracture.

The fracture toughness is dependent on temperature and material thickness. These parameters are accounted for separately in selection of material. The resulting fracture toughness in the weld and the heat affected zone is also dependent on the fabrication method.

Thus, to avoid brittle fracture, first a material with suitable fracture toughness for the actual design temperature and thickness is selected. Then a proper fabrication method is used. In special cases post weld heat treatment may be performed to reduce crack driving stresses, see also DNV-OS-C401. A suitable amount of inspection is carried out to remove planar defects larger than those considered acceptable. In this standard selection of material with appropriate fracture toughness and avoidance of unacceptable defects are achieved by linking different types of connections to different structural categories and inspection categories.

302 Components are classified into structural categories according to the following criteria:

- significance of component in terms of consequence of failure
- stress condition at the considered detail that together with possible weld defects or fatigue cracks may provoke brittle fracture.

Guidance note:
The consequence of failure may be quantified in terms of residual strength of the structure when considering failure of the actual component.

303 The structural category for selection of materials shall be determined according to principles given in Table A1.

<table>
<thead>
<tr>
<th>Structural category</th>
<th>Principles for determination of structural category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special</td>
<td>Structural parts where failure will have substantial consequences and are subject to a stress condition that may increase the probability of a brittle fracture. 1)</td>
</tr>
<tr>
<td>Primary</td>
<td>Structural parts where failure will have substantial consequences.</td>
</tr>
<tr>
<td>Secondary</td>
<td>Structural parts where failure will be without significant consequence.</td>
</tr>
</tbody>
</table>

Guidance note:

Monopile structures are categorised as “Primary”, because they are non-redundant structures whose stress pattern is primarily uniaxial and whose risk of brittle fracture is negligible.

Likewise, towers are also categorised as “Primary”.

Tubular joints are categorised as “Special” due to their biaxial or triaxial stress patterns and risk of brittle fracture. This will influence the thickness limitations as specified in Table A1.

304 Requirements and guidance for manufacturing of steel materials are given in DNV-OS-C401. For supplementary guidance, reference is made to ENV 1090-1 and ENV 1090-5. Steel materials and products shall be delivered with inspection documents as defined in EN 10204 or in an equivalent stand-
ard. Unless otherwise specified, material certificates according to Table A2 shall be presented.

<table>
<thead>
<tr>
<th>Table A2 Material certificates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certification ** process **</td>
</tr>
<tr>
<td>Test certificate</td>
</tr>
<tr>
<td>** Work certificate **</td>
</tr>
<tr>
<td>** Test report **</td>
</tr>
</tbody>
</table>

305 Requirements for type and extent of inspection of welds are given in DNV-OS-C401 depending on assigned inspection category for the welds. The requirements are based on the consideration of fatigue damage and assessment of general fabrication quality.

306 The inspection category is by default related to the structural category according to Table A3.

<table>
<thead>
<tr>
<th>Table A3 Inspection categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>** Inspection category **</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
</tbody>
</table>

307 The weld connection between two components shall be assigned an inspection category according to the highest category of the joined components. For stiffened plates, the weld connection between stiffener and stringer and girder web to the plate may be inspected according to inspection Category III.

308 If the fabrication quality is assessed by testing, or if it is of a well known quality based on previous experience, the extent of inspection required for elements within structural category primary may be reduced, but the extent must not be less than that for inspection Category III.

309 Fatigue-critical details within structural category primary and secondary shall be inspected according to requirements given for Category I. This requirement applies to fatigue-critical details in the support structure and the foundation, but not in the tower.

310 Welds in fatigue-critical areas not accessible for inspection and repair during operation shall be inspected according to requirements in Category I during construction.

311 For monopile type structures, the longitudinal welds in the monopile and in the transition piece to the grouted connection shall be inspected according to requirements given for Category I.

A 400 Structural steel

401 Wherever the subsequent requirements for steel grades are dependent on plate thickness, these requirements are based on the nominal thickness as built.

402 The requirements in this subsection deal with the selection of various structural steel grades in compliance with the requirements given in DNV-OS-B101. Where other codes or standards have been agreed on and utilised in the specification of steels, the application of such steel grades within the structure shall be specially considered.

403 The steel grades selected for structural components shall be related to calculated stresses and requirements to toughness properties. Requirements for toughness properties are in general based on the Charpy V-notch test and are dependent on design temperature, structural category and thickness of the component in question.

404 The material toughness may also be evaluated by fracture mechanics testing in special cases.

405 In structural cross-joints where high tensile stresses are acting perpendicular to the plane of the plate, the plate material shall be tested to prove the ability to resist lamellar tearing, Z-quality, see 411.

406 Requirements for forgings and castings are given in DNV-OS-B101.

407 Material designations for steel are given in terms of a strength group and a specified minimum yield stress according to steel grade definitions given in DNV-OS-B101 Ch.2 Sec.1. The steel grades are referred to as NV grades. Structural steel designations for various strength groups are referred to as given in Table A4.

<table>
<thead>
<tr>
<th>Table A4 Material designations</th>
</tr>
</thead>
<tbody>
<tr>
<td>** Designation **</td>
</tr>
<tr>
<td>NV</td>
</tr>
<tr>
<td>NV-27</td>
</tr>
<tr>
<td>NV-32</td>
</tr>
<tr>
<td>NV-36</td>
</tr>
<tr>
<td>NV-40</td>
</tr>
<tr>
<td>NV-420</td>
</tr>
<tr>
<td>NV-460</td>
</tr>
<tr>
<td>NV-500</td>
</tr>
<tr>
<td>NV-550</td>
</tr>
<tr>
<td>NV-620</td>
</tr>
<tr>
<td>NV-690</td>
</tr>
</tbody>
</table>

1) For steels of improved weldability the required specified minimum yield stress is reduced for increasing material thickness, see DNV-OS-B101.

408 Each strength group consists of two parallel series of steel grades:

— steels of normal weldability
— steels of improved weldability.

The two series are intended for the same applications. However, the improved weldability grades have, in addition to leaner chemistry and better weldability, extra margins to account for reduced toughness after welding. These grades are also limited to a specified minimum yield stress of 500 N/mm².

409 Conversions between NV grades as used in Table A4 and steel grades used in the EN10025-2 standard are used for the sole purpose of determining plate thicknesses and are given in Table A5. The number of one-to-one conversions between NV grades and EN10025-2 grades given in Table A5 is limited, because the E-qualities of the NV grades are not defined in EN10025-2 and because no qualities with specified minimum yield stress $f_y$ greater than 355 MPa are given in EN10025-2.
Guidance note:
Important notes to the conversions between NV grades and EN10025-2 grades in Table A5:

NV grades are, in general, better steel qualities than comparable EN10025-2 grades. For example, all NV grades except NV A and NV B, are fully killed and fine grain treated. This is the case only for the J2G3 and K2G3 grades in EN10025-2.

The delivery condition is specified as a function of thickness for all NV grades, while this is either optional or at the manufacturer’s discretion in EN10025-2.

The steel manufacturing process is also at the manufacturer’s option in EN10025-2, while only the electric process or one of the basic oxygen processes is generally allowed according to the DNV standard.

For the grades NV A, NV B and NV D, an averaged impact energy of minimum 27 Joule is specified for thicknesses up to and including 50 mm. For larger thicknesses, higher energy requirements are specified. EN10025-2 requires an averaged impact energy of minimum 27 Joule regardless of thickness.

Concerning NV A36 and NV D36, minimum 34 Joule averaged impact energy is required for thicknesses below 50 mm, 41 Joule for thicknesses between 50 and 70 mm, and 50 Joule for thicknesses above 70 mm. EN10025-2 specifies 27 Joule averaged impact energy for the S355J0 and S355K2G3 grades and 40 Joule for the S355K2G3 grade.

In EN10025-2, minimum specified mechanical properties (yield stress, tensile strength range and elongation) are thickness dependent. The corresponding properties for NV grades are specified independently of thickness.

Conversions between NV grades as used in Table A4 and steel grades used in the EN10025-3 standard are used for the sole purpose of determining plate thicknesses and are given in Table A6.

Guidance note:
Important notes to the conversions between NV grades and EN10025-3 grades in Table A6:

The conversions are based on comparable requirements to strength and toughness.

Because EN10025-3 specifies requirements to fine grain treatment, the EN10025-3 grades are in general better grades than corresponding grades listed in EN10025-2 and can be considered equivalent with the corresponding NV grades.

Table A5 Steel grade conversions

<table>
<thead>
<tr>
<th>NV grade</th>
<th>EN10025-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVA</td>
<td>S235JR+N</td>
</tr>
<tr>
<td>NVB</td>
<td>S235J0</td>
</tr>
<tr>
<td>NVD</td>
<td>S235J2+N</td>
</tr>
<tr>
<td>NVE</td>
<td></td>
</tr>
<tr>
<td>NV A27</td>
<td>S275J0</td>
</tr>
<tr>
<td>NV D27</td>
<td>S275J2+N</td>
</tr>
<tr>
<td>NV E27</td>
<td></td>
</tr>
<tr>
<td>NV A32</td>
<td></td>
</tr>
<tr>
<td>NV D32</td>
<td></td>
</tr>
<tr>
<td>NV E32</td>
<td></td>
</tr>
<tr>
<td>NV A36</td>
<td>S355J0</td>
</tr>
<tr>
<td>NV D36</td>
<td>S355K2+N and S355J2+N</td>
</tr>
<tr>
<td>NV E36</td>
<td></td>
</tr>
<tr>
<td>NV A40</td>
<td></td>
</tr>
<tr>
<td>NV D40</td>
<td></td>
</tr>
<tr>
<td>NV E40</td>
<td></td>
</tr>
<tr>
<td>NV E420</td>
<td></td>
</tr>
<tr>
<td>NV F420</td>
<td></td>
</tr>
<tr>
<td>NV D60</td>
<td></td>
</tr>
<tr>
<td>NV E60</td>
<td></td>
</tr>
<tr>
<td>NV F60</td>
<td></td>
</tr>
</tbody>
</table>

Table A6 Steel grade conversions

<table>
<thead>
<tr>
<th>NV grade</th>
<th>EN10025-3 grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVA</td>
<td></td>
</tr>
<tr>
<td>NVB</td>
<td></td>
</tr>
<tr>
<td>NVD</td>
<td></td>
</tr>
<tr>
<td>NVE</td>
<td></td>
</tr>
<tr>
<td>NV A27</td>
<td></td>
</tr>
<tr>
<td>NV D27</td>
<td></td>
</tr>
<tr>
<td>NV E27</td>
<td></td>
</tr>
<tr>
<td>NV A32</td>
<td></td>
</tr>
<tr>
<td>NV D32</td>
<td></td>
</tr>
<tr>
<td>NV E32</td>
<td></td>
</tr>
<tr>
<td>NV A36</td>
<td></td>
</tr>
<tr>
<td>NV D36</td>
<td></td>
</tr>
<tr>
<td>NV E36</td>
<td></td>
</tr>
<tr>
<td>NV A40</td>
<td></td>
</tr>
<tr>
<td>NV D40</td>
<td></td>
</tr>
<tr>
<td>NV E40</td>
<td></td>
</tr>
<tr>
<td>NV E420</td>
<td>S420NL</td>
</tr>
<tr>
<td>NV E420</td>
<td></td>
</tr>
<tr>
<td>NV F420</td>
<td></td>
</tr>
<tr>
<td>NV D60</td>
<td>S460N</td>
</tr>
<tr>
<td>NV E60</td>
<td>S460NL</td>
</tr>
<tr>
<td>NV F60</td>
<td></td>
</tr>
</tbody>
</table>

Table A7 Applicable steel grades

<table>
<thead>
<tr>
<th>Strength group</th>
<th>Grade</th>
<th>Normal weldability</th>
<th>Improved weldability</th>
<th>Test temperature (ºC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 1)</td>
<td>BW</td>
<td>0</td>
<td></td>
<td>Not tested</td>
</tr>
<tr>
<td>D</td>
<td>DW</td>
<td>–20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>EW</td>
<td>–40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AH</td>
<td>AHW</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH</td>
<td>DHW</td>
<td>–20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EH</td>
<td>EHW</td>
<td>–40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FH</td>
<td>–</td>
<td>–60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EHS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AEH</td>
<td>–</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEH</td>
<td>DEHW</td>
<td>–20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEH</td>
<td>EEHW</td>
<td>–40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEH</td>
<td>–</td>
<td>–60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Charpy V-notch tests are required for thickness above 25 mm but is subject to agreement between the contracting parties for thickness of 25 mm or less.

Additional symbol:

Z = steel grade of proven through-thickness properties. This symbol is omitted for steels of improved weldability although improved through-thickness properties are required.

411 Within each defined strength group, different steel grades are given, depending on the required impact toughness properties. The grades are referred to as A, B, D, E, and F for normal weldability grades and AW, BW, DW, and EW for improved weldability grades as defined in Table A7.

412 The grade of steel to be used shall in general be selected according to the design temperature and the thickness for the applicable structural category as specified in Table A8. The steel grades in Table A8 are NV grade designations.
B. Selection of Concrete Materials

B 100 General

101 For selection of structural concrete materials, DNV-OS-C502 Sec.4, “Structural Concrete and Materials” shall apply.

102 The present subsection, B, provides a short summary of DNV-OS-C502 Sec.4, focusing on issues which typically pertain to offshore concrete structures, but not necessarily to standard concrete design. For all design purposes, the user should always refer to the complete description in DNV-OS-C502 and the text in Subsection B shall be considered application text for the text of DNV-OS-C502 with respect to offshore wind turbine concrete structures.

B 200 Material requirements

201 The materials selected for the load-bearing structures shall be suitable for the purpose. The material properties and verification that these materials fulfil the requirements shall be documented.

202 The materials, all structural components and the structure itself shall be ensured to maintain the specified quality during all stages of construction and for the intended structural life.

203 Constituent materials for structural concrete are cement, aggregates and water. Structural concrete may also include admixtures and additions.

204 Constituent materials shall be sound, durable, free from defects and suitable for making concrete that will attain and retain the required properties. Constituent materials shall not contain harmful ingredients in quantities that can be detrimental to the durability of the concrete or cause corrosion of the reinforcement and shall be suitable for the intended use.

205 The following types of Portland cement are, in general, assumed to be suitable for use in structural concrete and/or grout in a marine environment if unmixed with other cements:

— Portland cements
— Portland composite cements
— Blastfurnace cements, with high clinker content.

Provided suitability is demonstrated also the following types of cement may be considered:

— Blastfurnace cements
— Pozzolanic cements
— Composite cements.

The above types of cement have characteristics specified in international and national standards. They can be specified in grades based on the 28-day strength in mortar. Cements shall normally be classified as normal hardening, rapid hardening or slowly hardening cements.

Guidance note:

Low heat cement may be used where heat of hydration may have an adverse effect on the concrete during curing.

---end-of-Guidance-note---

206 The required water content is to be determined by considering the strength and durability of hardened concrete and the workability of fresh concrete. The water-to-cement ratio by weight may be used as a measure. For requirements to the water-to-cement ratio, see B305.

207 Salt water, such as raw seawater, shall not be used as mixing or curing water for structural concrete.

208 Normal weight aggregates shall, in general, be of natural mineral substances. They shall be either crushed or uncrushed with particle sizes, grading and shapes such that they are suitable for the production of concrete. Relevant properties of aggregate shall be defined, e.g. type of material, shape, surface

---end---of---Guidance---note---
textural, physical properties and chemical properties.

Aggregates shall be free from harmful substances in quantities that can affect the properties and the durability of the concrete adversely. Examples of harmful substances are claylike and silty particles, organic materials and sulphates and other salts.

209 Aggregates shall be evaluated for risk of Alkali Silica Reaction (ASR) in concrete according to internationally recognised test methods. Suspect aggregates shall not be used unless specifically tested and approved. The approval of aggregates that might combine with the hydration products of the cement to cause ASR shall state which cement the approval applies to. The aggregate for structural concrete shall have sufficient strength and durability.

210 An appropriate grading of the fine and coarse aggregates for use in concrete shall be established. The grading and shape characteristics of the aggregates shall be consistent throughout the concrete production.

211 Maximum aggregate size is to be specified based on considerations concerning concrete properties, spacing of reinforcement and cover to the reinforcement.

212 Latent hydraulic or pozzolanic supplementary materials such as silica fume, pulverised fly ash and granulated blast furnace slag may be used as additions. The amount is dependent on requirements to workability of fresh concrete and required properties of the hardened concrete. The content of silica fume used as additions should normally not exceed 10% of the weight of Portland cement clinker. When fly ash, slag or other pozzolana is used as additions, their content should normally not exceed 35% of the total weight of cement and additions. When Portland cement is used in combination with only ground granulated blast furnace slag, the slag content may be increased. The clinker content shall, however, not be less than 30% of the total weight of cement and slag.

213 The composition and properties of repair materials shall be such that the material fulfils its intended use. Only materials with established suitability shall be used. Emphasis shall be given to ensure that such materials are compatible with the adjacent material, particularly with regard to the elasticity and temperature dependent properties.

B 300 Concrete

301 Normal Strength Concrete is a concrete of grade C30 to C65.

302 High Strength Concrete is a concrete of grade in excess of C65.

303 The concrete composition and the constituent materials shall be selected to satisfy the requirements of DNV-OS-C502 and the project specifications for fresh and hardened concrete such as consistency, density, strength, durability and protection of embedded steel against corrosion. Due account shall be taken of the methods of execution to be applied. The requirements of the fresh concrete shall ensure that the material is fully workable in all stages of its manufacture, transport, placing and compaction.

304 The required properties of fresh and hardened concrete shall be specified. These required properties shall be verified by the use of recognised testing methods, international standards or recognised national standards. Recognised standard is relevant ASTM, ACI and EN standard.

305 Compressive strength shall always be specified. In addition, tensile strength, modulus of elasticity (E-modulus) and fracture energy may be specified. Properties which can cause cracking of structural concrete shall be accounted for, i.e. creep, shrinkage, heat of hydration, thermal expansion and similar effects. The durability of structural concrete is related to permeability, absorption, diffusion and resistance to physical and chemical attacks in the given environment, a low water/cement-binder ratio is generally required in order to obtain adequate durability. The concrete shall normally have a water/cement-binder ratio not greater than 0.45. In the splash zone, this ratio shall not be higher than 0.40.

306 The demands given for cement content in DNV-OS-C502 Sec.4 D309 shall be considered demands as for cement/filler content calculated according to a recognised standard. The demands may be waived based on conditions such as less strict national requirements or track records for good performance and durability in marine environments for similar structures.

307 The concrete grades are defined as specified in DNV-OS-C502 Sec.6.

The properties of hardened concrete are generally related to the concrete grade. For concrete exposed to seawater the minimum grade is C40. For concrete which is not directly exposed to the marine environment, the grade shall not be less than C30.

308 The concrete grades are defined in DNV-OS-C502 Sec.6 Table C1 as a function of the Characteristic Compressive Cylinder strength of the concrete, fck. However, the grade numbers are related to the Characteristic Compressive Cylinder strength of the concrete, fck (100 mm cube).

B 400 Grout and mortar

401 The mix design of grout and mortar shall be specified for its designated purpose.

402 The constituents of grout and mortar shall meet the same type of requirements for their properties as those given for the constituents of concrete.

B 500 Reinforcement steel

501 Reinforcements shall be suitable for their intended service conditions and are to have adequate properties with respect to strength, ductility, toughness, weldability, bond properties (ribbed), corrosion resistance and chemical composition. These properties shall be specified by the supplier or determined by a recognised test method.

502 Reinforcement steel shall comply with ISO 6935, Parts 2 and 3 or relevant national or international standards for reinforcement steel.

503 Consistency shall be ensured between material properties assumed in the design and the requirements of the standard used. In general, hot-rolled, ribbed bars of weldable quality and with high ductility shall be used. Where the use of seismic detailing is required, the reinforcement provided shall meet the ductility requirements of the reference standard used in the design.

504 Fatigue properties and S-N curves shall be consistent with the assumptions of design.

B 600 Prestressing steel

601 Prestressing steel shall comply with ISO 6934 and/or relevant national or international standards for prestressing steel.

C. Grout Materials and Material Testing

C 100 General

101 The grout materials for grouted connections shall comply with relevant requirements given for both concrete and grout in DNV-OS-C502 “Offshore Concrete Structures”, Sec.3, as well as with requirements given for concrete in this standard (DNV-OS-J101) Sec.6 B.

102 The materials shall have sufficient workability to ensure filling of the annulus without establishing air pockets or water pockets or both in the grout.

103 Test specimens are to be made with varying mix propor-
tions to simulate the batching tolerances under field conditions. Grout mixes shall as a minimum be tested for the following properties:

- density
- air content
- workability
- viscosity
- stability (separation and bleeding)
- setting time
- compressive strength
- shrinkage/expansion
- effect of admixtures and compatibility of admixtures.

For some applications, other properties of the grout mix may be required to be confirmed by testing. For example, if hardening of the grout may introduce unacceptable thermal strains in the structure, it shall be confirmed that the maximum temperature-rise caused by the hardening process is within acceptable limits.

Samples for testing of the grout quality shall preferably be taken from the emerging, surplus grout. If this is not possible, other means of monitoring the density of the return grout are to be provided.

Tests on grout samples shall be carried out in order to verify the characteristic compressive strength of the grout. The characteristic compressive strength is normally defined as the compressive strength after setting 28 days at 20°C or the equivalent. If the grout is to be subjected to loading before the characteristic design strength has been achieved, for example due to installation of other structures or due to wave and wind loading before 28 days have passed, the assumed allowable grout strength at the time of the loading shall be verified. Curing of the specimens shall take place under conditions which are as similar to the curing conditions of the placed grout as possible.

The compressive strength is normally to be tested by making sets of 5 test specimens each. One such set of 5 specimens shall be used every time a test is to be carried out. Each specimen is to be taken from a single, random sample. The total number of test sets required according to this specification shall be obtained for every consumed 200 m³ of grout, once per shift or once per grouted compartment/annulus, whichever gives the largest number of test specimens. The test specimens are to be adequately marked and recorded for identification.

Guidance note:
The specified requirement to the number of test sets usually implies that one set consisting of 5 test specimens is obtained from each grouted structure. It is acceptable to calculate the grout strength as the average strength over all obtained samples, i.e. over a number of samples equal to five times the number of grouted structures, provided that it is demonstrated that the compressive strengths obtained from the tests on these samples belong statistically to the same population.

Experimental verification

If no sufficient documentation of the material properties of the grout is available experimental verification of the properties must be carried out.
SECTION 7
DESIGN OF STEEL STRUCTURES

A. Ultimate Limit States – General

A 100 General

101 This subsection gives provisions for checking the ultimate limit states for typical structural elements used in offshore steel structures.

102 The ultimate strength capacity of structural elements in yielding and buckling shall be assessed using a rational and justifiable engineering approach.

103 The structural capacity of all structural components shall be checked. The capacity check shall consider both excessive yielding and buckling.

104 Simplified assumptions regarding stress distributions may be used provided that the assumptions are made in accordance with generally accepted practice, or in accordance with sufficiently comprehensive experience or tests.

105 Prediction of structural capacity shall be carried out with due consideration of capacity reductions which are implied by the corrosion allowance specified in Sec. 11.

Guidance note:
The increase in wall thickness for a structural component, added to allow for corrosion, shall not be included in the calculation of the structural capacity of the component.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

A 200 Structural analysis

201 The structural analysis may be carried out as linear elastic, simplified rigid-plastic, or elastic-plastic analyses. Both first order or second order analyses may be applied. In all cases, the structural detailing with respect to strength and ductility requirement shall conform to the assumption made for the analysis.

202 When plastic or elastic-plastic analyses are used for structures exposed to cyclic loading, i.e. wind turbine loads and wave loads, checks shall be carried out to verify that the structure will shake down without excessive plastic deformations or fracture due to repeated yielding. A characteristic or design cyclic load history needs to be defined in such a way that the structural reliability in case of cyclic loading, e.g. storm loading, is not less than the structural reliability in the ULS for non-cyclic loads.

203 In case of linear analysis combined with the resistance formulations set down in this standard, shakedown can be assumed without further checks.

204 If plastic or elastic-plastic structural analyses are used for determining the sectional stress resultants, limitations to the width-to-thickness ratios apply. Relevant width-to-thickness ratios are found in the relevant codes used for capacity checks.

205 When plastic analysis and/or plastic capacity checks are used (cross section type I and II, according to Appendix H), the members shall be capable of forming plastic hinges with sufficient rotation capacity to enable the required redistribution of bending moments to develop. It shall also be checked that the load pattern will not be changed due to the deformations.

206 Cross sections of beams are divided into different types dependent on their ability to develop plastic hinges. A method for determination of cross sectional types is given in Appendix H.

A 300 Ductility

301 It is a fundamental requirement that all failure modes are sufficiently ductile such that the structural behaviour will be in accordance with the anticipated model used for determination of the responses. In general all design procedures, regardless of analysis method, will not capture the true structural behaviour. Ductile failure modes will allow the structure to redistribute forces in accordance with the presupposed static model. Brittle failure modes shall therefore be avoided, or they shall be verified to have excess resistance compared to ductile modes and in this way protect the structure from brittle failure.

302 The following sources for brittle structural behaviour may need to be considered for a steel structure:

— unstable fracture caused by a combination of the following factors: brittle material, low temperature in the steel, a design resulting in high local stresses and the possibilities for weld defects
— structural details where ultimate resistance is reached with plastic deformations only in limited areas, making the global behaviour brittle
— shell buckling
— buckling where interaction between local and global buckling modes occurs.

A 400 Yield check

401 Structural members for which excessive yielding is a possible mode of failure, are to be investigated for yielding.

402 Local peak stresses from linear elastic analysis in areas with pronounced geometrical changes, may exceed the yield stress provided that the adjacent structural parts has capacity for the redistributed stresses.

403 Yield checks may be performed based on net sectional properties. For large volume hull structures gross scantlings may be applied.

404 For yield check of welded connections, see Subsection H regarding welded connections.

A 500 Buckling check

501 Requirements for the elements of the cross section not fulfilling requirements to cross section type III need to be checked for local buckling.

502 Buckling analysis shall be based on the characteristic buckling resistance for the most unfavourable buckling mode.

503 The characteristic buckling strength shall be based on the 5th percentile of test results.

504 Initial imperfections and residual stresses in structural members shall be accounted for.

505 It shall be ensured that there is conformity between the initial imperfections in the buckling resistance formulae and the tolerances in the applied fabrication standard.

B. Ultimate Limit States – Shell Structures

B 100 General

101 The buckling stability of shell structures may be checked according to DNV-RP-C202 or Eurocode 3/EN 1993-1-1 and ENV 1993-1-6.

102 For interaction between shell buckling and column buckling, DNV-RP-C202 may be used.
103 If DNV-RP-C202 is applied, the material factor for shells shall be in accordance with Table B1.

<table>
<thead>
<tr>
<th>Table B1 Material factors $\gamma_M$ for buckling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of structure</td>
</tr>
<tr>
<td>Girder, beams stiffeners on shells</td>
</tr>
<tr>
<td>Shells of single curvature (cylindrical shells, conical shells)</td>
</tr>
</tbody>
</table>

Guidance note:
Note that the slenderness is based on the buckling mode under consideration.

$\lambda = \frac{f_y}{\sigma_e}$

where:
- $f_y = \text{specified minimum yield stress}$
- $\sigma_e = \text{elastic buckling stress for the buckling mode under consideration}$

--- end of Guidance note ---

104 For global buckling, the material factor $\gamma_M$ shall be 1.2 as a minimum, cf. IEC61400-1.

C. Ultimate Limit States – Tubular Members, Tubular Joints and Conical Transitions

C 100 General

101 Tubular members shall be checked according to recognised standards. Standards for the strength of tubular members typically have limitations with respect to the $D/t$ ratio and with respect to the effect of hydrostatic pressure. The following standards are relevant for checking tubular member strength: Classification Notes 30.1 Sec.2 (Compact cross sections), API RP2A-LRFD (D/t < 300), Eurocode 3/EN 1993-1-1 and ENV 1993-1-6 or NORSOK N-004 (D/t < 120). For interaction between local shell buckling and column buckling and for effect of external pressure, DNV-RP-C202 may be used.

Guidance note:
Compact tubular cross section is in this context defined as when the diameter ($D$) to thickness ($t$) ratio satisfy the following criterion:

$$\frac{D}{t} \leq 0.5 \sqrt{\frac{E}{f_y}}$$

where:
- $E = \text{modulus of elasticity}$
- $f_y = \text{minimum yield strength}$

--- end of Guidance note ---

102 Tubular members with external pressure, tubular joints and conical transitions may be checked according to API RP 2A – LRFD or NORSOK N-004.

103 The material factor $\gamma_M$ for tubular structures is 1.10.

104 For global buckling, the material factor $\gamma_M$ shall be 1.2 as a minimum, cf. IEC61400-1.

D. Ultimate Limit States – Non-Tubular Beams, Columns and Frames

D 100 General

101 The design of members shall take into account the possible limits on the resistance of the cross section due to local buckling.

102 Buckling checks may be performed according to Classification Notes 30.1.

103 Capacity checks may be performed according to recognised standards such as EN 1993-1-1 or AISC LRFD Manual of Steel Construction.

104 The material factors according to Table D1 shall be used if EN 1993-1-1 is used for calculation of structural resistance.

<table>
<thead>
<tr>
<th>Table D1 Material factors used with EN 1993-1-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of calculation</td>
</tr>
<tr>
<td>Resistance of Class 1, 2 or 3</td>
</tr>
<tr>
<td>cross sections</td>
</tr>
<tr>
<td>Resistance of Class 4</td>
</tr>
<tr>
<td>cross sections</td>
</tr>
<tr>
<td>Resistance of members to buckling</td>
</tr>
<tr>
<td>$^1$ Symbols according to EN 1993-1-1.</td>
</tr>
</tbody>
</table>

--- end of Guidance note ---

E. Ultimate Limit States – Special Provisions for Plating and Stiffeners

E 100 Scope

101 The requirements in E will normally give minimum scantlings to plate and stiffened panels with respect to yield.

102 The buckling stability of plates may be checked according to DNV-RP-C201.

E 200 Minimum thickness

201 The thickness of plates should not to be less than:

$$t = \frac{14.3t_0}{\sqrt{f_yd}} \text{ (mm)}$$

where:
- $f_yd = \text{design yield strength} = f_y/\gamma_M$
- $f_y$ is the minimum yield stress (N/mm²) as given in Sec.6 Table A3
- $t_0 = 7 \text{ mm} \text{ for primary structural elements}$
- $5 \text{ mm} \text{ for secondary structural elements}$
- $\gamma_M = \text{material factor for steel} = 1.10.$

E 300 Bending of plating

301 The thickness of plating subjected to lateral pressure shall not be less than:

$$t = \frac{15.8k_a k_r s \sqrt{p_d}}{\sqrt{\sigma_{pd1} k_{pp}}} \text{ (mm)}$$

where:
- $k_a = \text{correction factor for aspect ratio of plate field}$
- $= (1.1 - 0.25 s/l)^2$
- $s/l$ is maximum 1.0 for $s/l = 0.4$
- $= \text{minimum 0.72 for $s/l = 1.0$}$
- $k_r = \text{correction factor for curvature perpendicular to the stiffeners}$
- $= (1 - 0.5 s/r_c)$
- $r_c = \text{radius of curvature (m)}$
- $s = \text{stiffener spacing (m), measured along the plating}$
- $p_d = \text{design pressure (kN/m²) as given in Sec.4}$
- $\sigma_{pd1} = \text{design bending stress}$
- $= 1.3 (f_yd - \sigma_{pd1})$, but less than $f_y/\gamma_M$
σ_{jd} = \text{equivalent design stress for global in-plane membrane stress}

k_{pp} = \text{fixation parameter for plate}

= 1.0 \text{ for clamped edges}

= 0.5 \text{ for simply supported edges.}

**Guidance note:**
The design bending stress $\sigma_{pd1}$ is given as a bi-linear capacity curve.

---end---of---Guidance---note---

**E 400 Stiffeners**

401 The section modulus for longitudinals, beams, frames and other stiffeners subjected to lateral pressure shall not be less than:

$$Z_s = \frac{l^2}{k_m \sigma_{pd2} k_{ps}} \cdot 10^6 \text{ (mm}^3\text{), minimum 15} \cdot 10^3 \text{ (mm}^3\text{)}$$

$l$ = stiffener span (m)

$k_m$ = bending moment factor, see Table G1

$\sigma_{pd2}$ = design bending stress

$= f_{yd} - \sigma_{jd}$

$k_{ps}$ = fixation parameter for stiffeners

= 1.0 if at least one end is clamped

= 0.9 if both ends are simply supported.

402 The formula given in 401 shall be regarded as the requirement about an axis parallel to the plating. As an approximation the requirement for standard section modulus for stiffeners at an oblique angle with the plating may be obtained if the formula in 401 is multiplied by the factor:

$$\frac{1}{\cos \alpha}$$

$\alpha$ = angle between the stiffener web plane and the plane perpendicular to the plating.

403 Stiffeners with sniped ends may be accepted where dynamic stresses are small and vibrations are considered to be of small importance, provided that the plate thickness supported by the stiffener is not less than:

$$t \geq 16 \left( \frac{(l - 0.5 s) s p_d}{f_{yd}} \right) \text{ (mm)}$$

In such cases the section modulus of the stiffener calculated as indicated in 401 is normally to be based on the following parameter values:

$k_m = 8$

$k_{ps} = 0.9$

The stiffeners should normally be snipped with an angle of maximum 30°.

**Guidance note:**
For typical sniped end detail as described above, a stress range lower than 30 MPa can be considered as a small dynamic stress.

---end---of---Guidance---note---

**F. Ultimate Limit States – Special Provisions for Girders and Girder Systems**

**F 100 Scope**

101 The requirements in F give minimum scantlings to simple girders with respect to yield. Further procedures for the calculations of complex girder systems are indicated.

102 The buckling stability of girders may be checked according to Classification Notes No. 30.1.

**F 200 Minimum thickness**

201 The thickness of web and flange plating is not to be less than given in E200 and E300.

**F 300 Bending and shear**

301 The requirements for section modulus and web area are applicable to simple girders supporting stiffeners and to other girders exposed to linearly distributed lateral pressures. It is assumed that the girder satisfies the basic assumptions of simple beam theory and that the supported members are approximately evenly spaced and has similar support conditions at both ends. Other loads will have to be specially considered.

302 When boundary conditions for individual girders are not predictable due to dependence on adjacent structures, direct calculations according to the procedures given in F700 will be required.

303 The section modulus and web area of the girder shall be taken in accordance with particulars as given in F600 and F700. Structural modelling in connection with direct stress analysis shall be based on the same particulars when applicable.

**F 400 Effective flange**

401 The effective plate flange area is defined as the cross sectional area of plating within the effective flange width. The cross section area of continuous stiffeners within the effective flange may be included. The effective flange width $b_e$ is determined by the following formula:

$$b_e = C_e b$$

$C_e$ = as given in Figure 1 for various numbers of evenly spaced point loads ($N_p$) on the span

$b$ = full breadth of plate flange e.g. span of the stiffeners supported by the girder with effective flange $b_e$, see also 602.

$l_0$ = distance between points of zero bending moments (m)

= $S$ for simply supported girders

= $0.6 S$ for girders fixed at both ends

$S$ = girder span as if simply supported, see also 602.
Holes in girders will generally be accepted provided the shear stress level is acceptable and the buckling capacity and fatigue life are documented to be sufficient.

Simple girders subjected to lateral pressure and which are not taking part in the overall strength of the structure, shall comply with the following minimum requirements:

- net section modulus according to 602
- net web area according to 603.

Section modulus:

\[ Z_g = \frac{S^2 b p_d}{k_m \sigma_{pd}} \cdot 10^6 \text{ (mm}^3) \]

\[ S = \text{girder span (m). The web height of in-plane girders may be deducted. When brackets are fitted at the ends, the girder span S may be reduced by two thirds of the bracket arm length, provided the girder ends may be assumed clamped and provided the section modulus at the bracketed ends is satisfactory} \]

\[ b = \text{breadth of load area (m) (plate flange) b may be determined as:} \]

\[ = 0.5 (l_1 + l_2) \text{ (m),} l_1 \text{ and } l_2 \text{ are the spans of the supported stiffeners, or distance between girders} \]

\[ k_m = \text{bending moment factor} \]

\[ \sigma_{pd} = \text{design bending stress} \]

\[ \sigma_{yd} = \text{equivalent design stress for global in-plane membrane stress.} \]

Net web area:

\[ A_W = \frac{k_r S b p_d - N_s P_{pd}}{\tau_p} \cdot 10^3 \text{ (mm}^2) \]

\[ k_r = \text{shear force factor} \]

\[ N_s = \text{number of stiffeners between considered section and nearest support} \]

The \( N_s \) value is in no case to be taken greater than \((N_p+1)/4\)

Table F1 Values of \( k_m \) and \( k_\tau \)

<table>
<thead>
<tr>
<th>Positions</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support</td>
<td>( k_{m1} )</td>
<td>( k_{m2} )</td>
<td>( k_{m3} )</td>
</tr>
<tr>
<td>Field</td>
<td>( k_{r1} )</td>
<td>( k_{r2} )</td>
<td>( k_{r3} )</td>
</tr>
<tr>
<td>Support</td>
<td>( k_{m1} )</td>
<td>( k_{m2} )</td>
<td>( k_{m3} )</td>
</tr>
</tbody>
</table>

For girders where brackets are fitted or the flange area has been partly increased due to large bending moment, a larger \( k_m \) value may be used outside the strengthened region.

F 700 Complex girder system

For girders that are parts of a complex 2- or 3-dimensional structural system, a complete structural analysis shall be carried out.

Calculation methods or computer programs applied shall take into account the effects of bending, shear, axial and torsional deformation.

The calculations shall reflect the structural response of the 2- or 3-dimensional structure considered, with due attention to boundary conditions.

For systems consisting of slender girders, calculations based on beam theory (frame work analysis) may be applied, with due attention to:

- shear area variation, e.g. cut-outs
- moment of inertia variation
The most unfavourable of the loading conditions given in Sec. 4 shall be applied.

For girders taking part in the overall strength of the unit, stresses due to the design pressures given in Sec. 4 shall be combined with relevant overall stresses.

G. Ultimate Limit States – Slip-resistant Bolt Connections

G 100 General

101 The requirements in G give the slip capacity of pre-tensioned bolt connections with high-strength bolts.

102 A high-strength bolt is defined as a bolt that has an ultimate tensile strength larger than 800 N/mm² and a yield strength which as a minimum is 80% of the ultimate tensile strength.

103 The bolt shall be pre-tensioned in accordance with international recognised standards. Procedures for measurement and maintenance of the bolt tension shall be established.

104 The design slip resistance \( R_d \) may be specified equal to or higher than the design loads \( F_d \):

\[ R_d \geq F_d \]

105 In addition, the slip resistant connection shall have the capacity to withstand ULS and ALS loads as a bearing bolt connection. The capacity of a bolted connection may be determined according to international recognised standards which give equivalent level of safety such as EN 1993-1-1 or AISC LRFD Manual of Steel Construction.

106 The design slip resistance of a preloaded high-strength bolt shall be taken as:

\[ R_d = \frac{k_s n \mu}{\gamma_{Ms}} F_{pd} \]

where:
- \( k_s \) = hole clearance factor
  - 1.00 for standard clearances in the direction of the force
  - 0.85 for oversized holes
  - 0.70 for long slotted holes in the direction of the force
- \( n \) = number of friction interfaces
- \( \mu \) = friction coefficient
- \( \gamma_{Ms} \) = 1.25 for standard clearances in the direction of the force
  - 1.4 for oversize holes or long slotted holes in the direction of the force
  - 1.1 for design shear forces with load factor 1.0.
- \( F_{pd} \) = design preloading force.

107 For high strength bolts, the controlled design pre-tensioning force in the bolts used in slip resistant connections are:

\[ F_{pd} = 0.7 f_{ub} A_s \]

where:
- \( f_{ub} \) = ultimate tensile strength of the bolt
- \( A_s \) = tensile stress area of the bolt (net area in the threaded part of the bolt).

108 The design value of the friction coefficient \( \mu \) is dependent on the specified class of surface treatment as given in DNV-OS-C401 Sec. 7. The value of \( \mu \) shall be taken according to Table G1.

109 The classification of any surface treatment shall be based on tests or specimens representative of the surfaces used in the structure using the procedure set out in DNV-OS-C401.

110 Provided the contact surfaces have been treated in conformity with DNV-OS-C401 Sec. 7, the surface treatments given in Table G2 may be categorised without further testing.

111 Normal clearance for fitted bolts shall be assumed if not otherwise specified. The clearances are defined in Table G3.

112 Oversized holes in the outer ply of a slip resistant connection shall be covered by hardened washers.

113 The nominal sizes of slotted holes for slip resistant connections shall not be greater than given in Table G4.
The nominal sizes of long slotted holes for slip resistant connections shall not be greater than given in Table G5.

Table G5 Long slotted holes

<table>
<thead>
<tr>
<th>Maximum size mm</th>
<th>Bolt diameter d (maximum) mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d + 1) by 2.5d</td>
<td>12 and 14</td>
</tr>
<tr>
<td>(d + 2) by 2.5d</td>
<td>16 to 24</td>
</tr>
<tr>
<td>(d + 3) by 2.5d</td>
<td>27 and larger</td>
</tr>
</tbody>
</table>

Long slots in an outer ply shall be covered by cover plates of appropriate dimensions and thickness. The holes in the cover plate shall not be larger than standard holes.

H. Ultimate Limit States – Welded Connections

H 100 General

101 The requirements in this subsection apply to types and sizes of welds.

H 200 Types of welded steel joints

201 All types of butt joints should be welded from both sides. Before welding is carried out from the second side, unsound weld metal shall be removed at the root by a suitable method.

202 The connection of a plate abutting on another plate in a tee joint or a cross joint may be made as indicated in Figure 2.

203 The throat thickness of the weld is always to be measured as the normal to the weld surface, as indicated in Figure 2d.

204 The type of connection should be adopted as follows:

a) Full penetration weld

Important cross connections in structures exposed to high stress, especially dynamic, e.g. for special areas and fatigue utilised primary structure. All external welds in way of opening to open sea e.g. pipes, sea-chests or tee-joints as applicable.

b) Partial penetration weld

Connections where the static stress level is high. Acceptable also for dynamically stressed connections, provided the equivalent stress is acceptable, see 312.

c) Fillet weld

Connections where stresses in the weld are mainly shear, or direct stresses are moderate and mainly static, or dynamic stresses in the abutting plate are small.

205 Double continuous welds are required in the following connections, irrespective of the stress level:

— oil-tight and watertight connections
— connections at supports and ends of girders, stiffeners and pillars
— connections in foundations and supporting structures for machinery
— connections in rudders, except where access difficulties necessitate slot welds.

206 Intermittent fillet welds may be used in the connection of girder and stiffener webs to plate and girder flange plate, respectively, where the connection is moderately stressed. With reference to Figure 3, the various types of intermittent welds are as follows:

— chain weld
— staggered weld
— scallop weld (closed).

207 Where intermittent welds are accepted, scallop welds shall be used in tanks for water ballast or fresh water. Chain and staggered welds may be used in dry spaces and tanks arranged for fuel oil only.
Slot welds, see Figure 4, may be used for connection of plating to internal webs, where access for welding is not practicable, e.g. rudders. The length of slots and distance between slots shall be considered in view of the required size of welding.

Lap joints as indicated in Figure 5 may be used in end connections of stiffeners. Lap joints should be avoided in connections with dynamic stresses.

The material factors $\gamma_{Mw}$ for welded connections are given in Table H1.

<table>
<thead>
<tr>
<th>Limit state</th>
<th>Material factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULS</td>
<td>1.25</td>
</tr>
</tbody>
</table>

If the yield stress of the weld deposit is higher than that of the base metal, the size of ordinary fillet weld connections may be reduced as indicated in 304.

The yield stress of the weld deposit is in no case to be less than given in DNV-OS-C401.

Welding consumables used for welding of normal steel and some high strength steels are assumed to give weld deposits with characteristic yield stress $\sigma_{fw}$ as indicated in Table H2. If welding consumables with deposits of lower yield stress than specified in Table H2 are used, the applied yield strength shall be clearly informed on drawings and in design reports.

The size of some weld connections may be reduced:
- corresponding to the strength of the weld metal, $f_w$:
  $$f_w = \left( \frac{\sigma_{fw}}{235} \right)^{0.75}$$
- corresponding to the strength ratio value $f_r$, base metal to weld metal:
  $$f_w = \left( \frac{f_y}{\sigma_{fw}} \right)^{0.75}$$

Ordinary values for $f_y$ and $f_r$ for normal strength and high-strength steels are given in Table H2. When deep penetrating welding processes are applied, the required throat thicknesses may be reduced by 15% provided that sufficient weld penetration is demonstrated.

Conversions between NV grades as used in Table H2 and steel grades used in the EN10025-2 standard are given in Sec.6.

Where the connection of girder and stiffener webs and plate panel or girder flange plate, respectively, are mainly shear stressed, fillet welds as specified in 307 to 309 should be adopted.
307 Unless otherwise established, the throat thickness of double continuous fillet welds should not be less than:

\[ t_w = 0.43 f_t t_0 \text{ (mm), minimum 3 mm} \]

\[ f_t = \text{strength ratio as defined in 304} \]

\[ t_0 = \text{net thickness (mm) of abutting plate.} \]

For stiffeners and for girders within 60% of the middle of span, \( t_0 \) should not be taken greater than 11 mm, however, in no case less than 0.5 times the net thickness of the web.

308 The throat thickness of intermittent welds may be as required in 307 for double continuous welds provided the welded length is not less than:

- 50% of total length for connections in tanks
- 35% of total length for connections elsewhere.

Double continuous welds shall be adopted at stiffener ends when necessary due to bracketed end connections.

309 For intermittent welds, the throat thickness is not to exceed:

- for chain welds and scallop welds:
  \[ t_w = 0.6 f_t t_0 \text{ (mm)} \]
  \[ t_0 = \text{net thickness abutting plate:} \]

- for staggered welds:
  \[ t_w = 0.75 f_t t_0 \text{ (mm)} \]

If the calculated throat thickness exceeds that given in one of the equations above, the considered weld length shall be increased correspondingly.

310 In structural parts where dynamic stresses or high static tensile stresses act through an intermediate plate, see Figure 2, penetration welds or increased fillet welds shall be used.

311 When the abutting plate carries dynamic stresses, the connection shall fulfill the requirements with respect to fatigue, see J.

312 When the abutting plate carries tensile stresses higher than 120 N/mm\(^2\), the throat thickness of a double continuous weld is not to be less than:

\[ t_w = \frac{1.36}{f_w} \left[ 0.2 + \left( \frac{\sigma_d}{320} - 0.25 \right) r \right] t_0 \text{ (mm)} \]

minimum 3 mm.

\[ f_w = \text{strength ratio as defined in 304} \]

\[ \sigma_d = \text{calculated maximum design tensile stress in abutting plate (N/mm}^2\) \]

\[ r = \text{root face (mm), see Figure 2b} \]

\[ t_0 = \text{net thickness (mm) of abutting plate.} \]

313 Stiffeners may be connected to the web plate of girders in the following ways:

- welded directly to the web plate on one or both sides of the stiffener
- connected by single- or double-sided lugs
- with stiffener or bracket welded on top of frame
- a combination of the ways listed above.

In locations where large shear forces are transferred from the stiffener to the girder web plate, a double-sided connection or stiffening should be required. A double-sided connection may be taken into account when calculating the effective web area.

314 Various standard types of connections between stiffeners and girders are shown in Figure 6.

315 Connection lugs should have a thickness not less than 75% of the web plate thickness.

316 The total connection area (parent material) at supports of stiffeners should not to be less than:

\[ a_0 = \sqrt{3} \frac{c}{f_{yd}} \times 10^3 \left( l - 0.5s \right) p_d \text{ (mm}^2\) \]

\[ c = \text{detail shape factor as given in Table H3} \]

\[ f_{yd} = \text{minimum yield design stress (N/mm}^2\) \]

\[ l = \text{span of stiffener (m)} \]

\[ s = \text{distance between stiffeners (m)} \]

\[ p_d = \text{design pressure (kN/m}^2\). \]
The total weld area \( a \) is not to be less than:

\[
a = f_r a_0 \text{ (mm}^2)\]

\( f_r \) = strength ratio as defined in 304

\( a_0 \) = connection area \((\text{mm}^2)\) as given in 316.

The throat thickness is not to exceed the maximum for scallop welds given in 309.

317 The weld connection between stiffener end and bracket is in principle to be designed such that the design shear stresses of the connection correspond to the design resistance.

318 The weld area of brackets to stiffeners which are carrying longitudinal stresses or which are taking part in the strength of heavy girders etc., is not to be less than the sectional area of the longitudinal.

319 Brackets shall be connected to bulkhead by a double continuous weld, for heavily stressed connections by a partly or full penetration weld.

320 The weld connection area of bracket to adjoining girders or other structural parts shall be based on the calculated normal and shear stresses. Double continuous welding shall be used. Where large tensile stresses are expected, design according to 310, 311, and 312 shall be applied.

321 The end connections of simple girders shall satisfy the requirements for section modulus given for the girder in question. Where the shear design stresses in web plate exceed 90 N/mm\(^2\), double continuous boundary fillet welds should have throat thickness not less than:

\[
t_w = \frac{\tau_d}{260 f_w} t_0 \text{ (mm)}
\]

\( \tau_d \) = design shear stress in web plate \((\text{N/mm}^2)\)

\( f_w \) = strength ratio for weld as defined in 304

\( t_0 \) = net thickness \((\text{mm})\) of web plate.

322 The distribution of forces in a welded connection may be calculated directly based on an assumption of either elastic or plastic behaviour.

323 Residual stresses and stresses not participating in the transfer of load need not be included when checking the resistance of a weld. This applies specifically to the normal stress parallel to the axis of a weld.

324 Welded connections shall be designed to have adequate deformation capacity.

325 In joints where plastic hinges may form, the welds shall be designed to provide at least the same design resistance as the weakest of the connected parts.

326 In other joints where deformation capacity for joint rotation is required due to the possibility of excessive straining, the welds require sufficient strength not to rupture before general yielding in the adjacent parent material.

### Guidance note:

In general this will be satisfied if the design resistance of the weld is not less than 80% of the design resistance of the weakest of the connected parts.

327 The design resistance of fillet welds is adequate if, at every point in its length, the resultant of all the forces per unit length transmitted by the weld does not exceed its design resistance.

328 The design resistance of the fillet weld will be sufficient if both the following conditions are satisfied:

\[
\sqrt{\sigma_{\perp d}^2 + 3(\tau_{|| d}^2 + \tau_{\perp d}^2)} \leq \frac{f_u}{\beta_w \gamma_{Mw}}
\]

and

\[
\sigma_{\perp d} \leq \frac{f_u}{\gamma_{Mw}}
\]

\( \sigma_{\perp d} \) = normal design stress perpendicular to the throat (including load factors)

\( \tau_{\perp d} \) = shear design stress (in plane of the throat) perpendicular to the axis of the weld

\( \tau_{|| d} \) = shear design stress (in plane of the throat) parallel to the axis of the weld, see Figure 7

\( f_u \) = nominal lowest ultimate tensile strength of the weaker part joined

\( \beta_w \) = appropriate correlation factor, see Table H4

\( \gamma_{Mw} \) = material factor for welds

### Figure 7

Stresses in fillet weld

### Table H3 Detail shape factor \( c \)

<table>
<thead>
<tr>
<th>Type of connection (see Figure 6)</th>
<th>I Web-to-web connection only</th>
<th>II Stiffener or bracket on top of stiffener</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single-sided</td>
<td>Double-sided</td>
</tr>
<tr>
<td>a</td>
<td>1.00</td>
<td>1.25</td>
</tr>
<tr>
<td>b</td>
<td>0.90</td>
<td>1.15</td>
</tr>
<tr>
<td>c</td>
<td>0.80</td>
<td>1.00</td>
</tr>
</tbody>
</table>

The throat thickness is not to exceed the maximum for scallop welds given in 309.

### Table H4 The correlation factor \( \beta_w \)

<table>
<thead>
<tr>
<th>Steel grade</th>
<th>Lowest ultimate tensile strength</th>
<th>Correlation factor ( \beta_w )</th>
</tr>
</thead>
<tbody>
<tr>
<td>NV NS</td>
<td>400</td>
<td>0.83</td>
</tr>
<tr>
<td>NV 27</td>
<td>400</td>
<td>0.83</td>
</tr>
<tr>
<td>NV 32</td>
<td>440</td>
<td>0.86</td>
</tr>
<tr>
<td>NV 36</td>
<td>490</td>
<td>0.89</td>
</tr>
<tr>
<td>NV 40</td>
<td>510</td>
<td>0.9</td>
</tr>
<tr>
<td>NV 420</td>
<td>530</td>
<td>1.0</td>
</tr>
<tr>
<td>NV 460</td>
<td>570</td>
<td>1.0</td>
</tr>
</tbody>
</table>
I. Serviceability Limit States

I 100 General

101 Serviceability limit states for offshore steel structures are associated with:

— deflections which may prevent the intended operation of equipment
— deflections which may be detrimental to finishes or non-structural elements
— vibrations which may cause discomfort to personnel
— deformations and deflections which may spoil the aesthetic appearance of the structure.

I 200 Deflection criteria

201 For calculations in the serviceability limit states $\gamma_M = 1.0$.

202 Limiting values for vertical deflections should be given in the design brief. In lieu of such deflection criteria limiting values given in Table I1 may be used.

Table I1 Limiting values for vertical deflections

<table>
<thead>
<tr>
<th>Condition</th>
<th>Limit for $\delta_{\text{max}}$</th>
<th>Limit for $\delta_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deck beams</td>
<td>$L$ 200</td>
<td>$L$ 300</td>
</tr>
<tr>
<td>Deck beams supporting plaster or other brittle finish or non-flexible partitions</td>
<td>$L$ 250</td>
<td>$L$ 350</td>
</tr>
</tbody>
</table>

$L$ is the span of the beam. For cantilever beams $L$ is twice the projecting length of the cantilever.

203 The maximum vertical deflection is:

$$\delta_{\text{max}} = \delta_1 + \delta_2 - \delta_0$$

$\delta_{\text{max}}$ = the sagging in the final state relative to the straight line joining the supports

$\delta_0$ = the pre-camber

$\delta_1$ = the variation of the deflection of the beam due to the permanent loads immediately after loading

$\delta_2$ = the variation of the deflection of the beam due to the variable loading plus any time dependent deformations due to the permanent load.

Figure 8
Definitions of vertical deflections

204 Shear lag effects need to be considered for beams with wide flanges.

J 200 Characteristic S-N curves

201 For structural steel, the characteristic S-N curve can be taken as

$$\log_{10} N = \log_{10} a - m \log_{10} \left( \frac{t}{t_{\text{ref}}} \right)^k$$

in which

$N$ = fatigue life, i.e. number of stress cycles to failure at stress range $\Delta \sigma$

$\Delta \sigma$ = stress range in MPa

$m$ = negative slope of S-N curve on logN-logS plot

$log_\sigma$ = intercept of logN axis

$t_{\text{ref}}$ = reference thickness, $t_{\text{ref}} = 32$ mm for tubular joints, $t_{\text{ref}} = 25$ mm for welded connections other than tubular joints, such as girth welds

$t$ = thickness through which the potential fatigue crack will grow; $t = t_{\text{ref}}$ shall be used in expression when $t < t_{\text{ref}}$

$k$ = thickness exponent, also known as scale exponent.
be established for the structure or structural component. Mechanics design analysis separately or as supplement to an S-
fracture mechanics. An alternative method for fracture connections (tubular joints and tubular girth welds) based on
vides a method for calculation of the fatigue life for tubular
N fatigue calculation, see DNV-RP-C203. Appendix E pro-
1) For girth welds welded from both sides, the S-N curves for the weld toe apply at both sides. For girth welds welded from one side only, the S-N curves require a method for calculation of the fatigue life for tubular
2) Transverse butt weld on a temporary or permanent backing strip without fillet welds.

**Guidance note:**
In general, the classification of structural details and their corresponding S-N curves in air, in seawater with adequate corrosion protection and in free corrosion conditions, can be taken from DNV-RP-C203 “Fatigue Strength Analyses of Offshore Steel Structures”. The S-N curves for the most frequently used structural details in steel support structures for offshore wind turbines are given in Table J1. Curves specified for material in air are valid for details, which are located above the splash zone. The “in air” curves may also be utilised for the internal parts of air-filled members below water and for pile driving fatigue analysis.

The basis for the use of the S-N curves in Table J1 is that a high fabrication quality of the details is present, i.e., welding and NDT shall be in accordance with Inspection Category I and Structural Category ‘Special’ according to DNV-OS-C401 Chapter 2 Sec.3 Tables C3, C4 and C5. For structural details in the tower, the requirement of NDT inspections in accordance with Inspection Category I and Structural fabrication quality of the details is present, i.e. welding and NDT.

For S-N curves for plated structures, I-girders and other structural details than those covered by Table J1, reference is made to DNV-RP-C203.

---end---of---Guidance---note---

**202** Calculation of the fatigue life may be based on fracture mechanics design analysis separately or as supplement to an S-N fatigue calculation, see DNV-RP-C203. Appendix E provides a method for calculation of the fatigue life for tubular connections (tubular joints and tubular girth welds) based on fracture mechanics. An alternative method for fracture mechanics calculations can be found in BS 7910.

**J 300** Characteristic stress range distribution

**301** A characteristic long-term stress range distribution shall be established for the structure or structural component.

**302** All significant stress ranges, which contribute to fatigue damage in the structure, shall be considered.

---end---of---Guidance---note---

**303** Whenever appropriate, all stress ranges of the long-term stress range distribution shall be multiplied by a stress concentration factor (SCF). The SCF depends on the structural geometry. SCFs can be calculated from parametric equations or by finite element analysis.

**Guidance note:**
In wind farms, where the same joint or structural detail is repeated many times in many identical support structures, requirements to cost-effectiveness makes it particularly impor-
tant to assess the SCFs accurately, and assessment by finite element analysis is recommended.

When parametric equations are used to calculate SCFs for tubular joints, the Efthymiou equations should be applied for T, Y, DT and X joints, as well as for K and KT joints. For details, see Appendix A.

When finite element methods based on conventional rigid-joint frame models of beam elements are used to calculate SCFs for tubular joints, it is important to include local joint flexibilities. Such local joint flexibilities exist, but are not reflected in the rigid beam element connections of such frame models. For inclusion of local joint flexibilities, Buitrago’s parametric formulae shall be used. Details are given in Appendix B.

For multi-planar tubular joints for which the multi-planar effects are not negligible, the SCFs may either be determined by a detailed FEM analysis of each joint or by selecting the largest SCF for each brace among the values resulting from considering the joint to be a Y, X and K joint.

When conical stubs are used, the SCF may be determined by using the cone cross section at the point where the centre line of the cone intersects the outer surface of the chord. For gapped joints with conical stubs, the true gaps shall be applied. A minimum SCF equal to 1.5 should be adopted for tubular joints if no other documentation is available.

In tube-to-tube girth welds, geometrical stress increases are induced by local bending moments in the tube wall, created by centre line misalignment from tapering and fabrication tolerances and by differences in hoop stiffness for tubes of different thickness. Details for calculation of SCFs for tube-to-tube girth welds are given in Appendix C. It is recommended that as strict fabrication tolerances as possible are required for tube-to-tube welds as a means for minimising the stress concentration factor.

For fatigue analysis of regions in base material not significantly affected by residual stresses due to welding, the stress ranges may be reduced prior to the fatigue analysis depending on whether the mean stress is a tensile stress or a compressive stress.

**Guidance note:**

The reduction is meant to account for effects of partial or full fatigue crack closure when the material is in compression. An example of application is cut-outs in the base material. The mean stress \( \sigma_m \) is the static notch stress including stress concentration factors. Let \( \Delta \sigma \) denote the stress range including stress concentration factors. Prior to execution of the fatigue analysis, in which the long-term stress range distribution is applied together with the S-N curve for prediction of fatigue damage, the stress ranges may be multiplied by a reduction factor \( f_m \) which is in general obtained from Figure 9:

\[
DAF = \frac{1}{\sqrt{(1 - \xi^2)^2 + (2\xi\Omega)^2}}
\]

in which

\( \xi \) = damping ratio relative to critical damping  
\( \Omega \) = ratio between applied frequency and natural frequency

When the natural period of the wind turbine, support structure and foundation is greater than 2.5 sec, a time domain analysis shall be carried out to determine the dynamic amplification factor. The damping ratio for jacket type support structures can generally be chosen as 1% relative to critical damping. The vibration modes relevant for determination of dynamic amplification factors are typically the global sway modes, which can be excited by wave loading.

**307** The stress ranges in the stress range distribution must be compatible with the stress ranges of the S-N curve that the distribution is to be used with for fatigue damage predictions. At welds, where stress singularities are present and extrapolation needs to be applied to solve for the stress ranges, this implies

---end-of-Guidance-note---
that the same extrapolation procedure must be applied to establish the stress ranges of the stress range distribution as the one that was used to establish the stress range values of the S-N curve for the weld.

**Guidance note:**
S-N curves are based on fatigue tests of representative steel specimens. During testing, stresses are measured by means of strain gauges. Stresses in the notch zone at the weld root and the weld toe cannot be measured directly, because strain gauges cannot be fitted in this area due to the presence of the weld. In addition, strain gauges are located in specific positions on the test specimens, and the notch stress is established by processing the measurements. To ensure an unambiguous stress reference for welded structural details, the strain gauge positions to be used for application of the stress range extrapolation are prescribed for each type of structural detail.

To fulfill the compatibility requirement, the stresses in the welds from the applied loading must be established as hot spot stresses for the weld in question, i.e. the stresses in the welds must be established by extrapolation from stresses in the extrapolation points selected for the actual structural detail. Thus when a finite element analysis is used to establish the stresses in the welds from the applied load, the stresses in the welds are to be found by extrapolation from the stresses that are calculated by the analysis in the prescribed extrapolation points.

Appendix D provides definitions of the stress extrapolation points which are prescribed for the actual structural detail. Thus: strain gauge positions to be used for application of the stress range extrapolation are prescribed for each type of structural detail.

Reference is made to DNV-RP-C203 for more details.

---end-of-Guidance-note---

**J 400 Characteristic and design cumulative damage**

**401 Predictions of fatigue life may be based on calculations of cumulative fatigue damage under the assumption of linearly cumulative damage.**

**Guidance note:**
There are two approaches to the calculation of the characteristic cumulative damage. The two approaches are denoted Method (1) and Method (2).

**Method (1):**
The characteristic cumulative damage $D_C$ is calculated by Miner’s sum as

$$D_C = \sum_{i=1}^{I} \frac{n_{C,i}}{N_{C,i}}$$

in which

$I$ = number of stress range blocks in a sufficiently fine, chosen discretisation of the stress range axis

$n_{C,i}$ = number of stress cycles in the $i$th stress block, interpreted from the characteristic long-term distribution of stress ranges

$N_{C,i}$ = number of cycles to failure at stress range of the $i$th stress block, interpreted from the characteristic S-N curve

The characteristic cumulative damage $D_C$ is calculated by Miner’s sum.

$D_D = DFF \cdot D_C$

**Method (2):**
The design cumulative damage $D_D$ is then obtained by multiplying the characteristic cumulative damage $D_C$ by the design fatigue factor $DFF$

$$D_D = \sum_{i=1}^{I} \frac{n_{C,i}}{N_{D,i}}$$

in which

$D_D$ = design cumulative fatigue damage

$I$ = number of stress range blocks in a sufficiently fine, chosen discretisation of the stress range axis

$n_{C,i}$ = number of stress cycles in the $i$th stress block, interpreted from the characteristic long-term distribution of stress ranges

$N_{D,i}$ = number of cycles to failure at stress range of the $i$th stress block, interpreted from the characteristic S-N curve

$\gamma_m$ = material factor for fatigue

$\Delta \sigma_{i}$ = stress range of the $i$th stress block in the characteristic long-term distribution of stress ranges.

---end-of-Guidance-note---

**J 500 Design fatigue factors**

**501** The design fatigue factor $DFF$ for use with Method (1) is a partial safety factor to be applied to the characteristic cumulative fatigue damage $D_C$ in order to obtain the design fatigue damage.

**Guidance note:**
Because fatigue life is inversely proportional to fatigue damage, the design fatigue factor can be applied as a divisor on the characteristic fatigue life to obtain the design fatigue life.

---end-of-Guidance-note---

**502** The DFF depends on the significance of the structure or structural component with respect to structural integrity and accessibility for inspection and repair.

**503** The design fatigue factors in Table J2 are valid for structures or structural components with low consequence of failure. The design fatigue factors in Table J2 depend on the location of the structural detail, of the accessibility for inspection and repair, and of the type of corrosion protection.
Table J2 Requirements to design fatigue factors, DFF

<table>
<thead>
<tr>
<th>Location</th>
<th>Accessibility for inspection and repair of initial fatigue and coating damages (8)</th>
<th>Corrosion protection</th>
<th>Corrosion allowance (10)</th>
<th>S-N curve</th>
<th>DFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric zone</td>
<td>Yes</td>
<td>Coating (1)</td>
<td>No</td>
<td>In air</td>
<td>1.0</td>
</tr>
<tr>
<td>Splash zone (5)</td>
<td>Yes</td>
<td>Coating (2) (3)</td>
<td>Yes (6)</td>
<td>Combination of curves marked “air” and “free corrosion” (9)</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Cobaltic protection and optional coating (2) (4)</td>
<td>Yes (7)</td>
<td>In seawater</td>
<td>3.0</td>
</tr>
<tr>
<td>Submerged zone</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scour zone</td>
<td>No</td>
<td>None</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Below seaford</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closed compartments with seawater</td>
<td>Yes</td>
<td>Coating near free surfaces and above free surfaces (12)</td>
<td>Yes (11)</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
</tr>
</tbody>
</table>

1) Coating for structures above the splash zone shall be a high quality multilayer coating in accordance with corrosivity category 5SM in ISO 12944.
2) Coating for structures in the splash zone and below the splash zone shall be taken as for (1) and shall furthermore be qualified for compatibility with cathodic protection systems. Selection and qualification of coating systems shall include consideration of all conditions relevant for necessary repair after installation.
3) Coating shall be selected with due consideration of loads from impacts from service vessels and floating ice.
4) Below the splash zone coating is considered optional. Coating can provide a reliable corrosion protection and can be designed such as to reduce marine growth. However, coating can be damaged during inspection and maintenance sessions where marine growth is removed.
5) Splash zone definition according to Sec.11 B200.
6) The corrosion allowance in the splash zone shall be selected in accordance with the corrosion rate for the structural steel in seawater and in accordance with the planned inspection and repair strategy. In the North Sea the corrosion allowance for coated primary steel structures without planned coating repair in a 20-year design life is 6 mm. A corrosion allowance of minimum 2 mm is recommended for replaceable secondary structures.
7) In the scour zone the cathodic protection might not be fully effective and anaerobic corrosion might occur. For typical North Sea conditions it is recommended to design with a corrosion allowance of 3 mm in the scour zone.
8) If the designer considers the steel surface accessible for inspection and repair of initial fatigue damage and coating this must be documented through qualified procedures for these activities. See also Sec.11 and Sec.13.
9) The basic S-N curve for unprotected steel in the splash zone is the curve marked “free corrosion”. The basic S-N curve for coated steel is the curve marked “in air”. It is acceptable to carry out fatigue life calculations in the splash zone based on accumulated damage for steel considering the probable coating conditions throughout the design life – intact, damaged and repaired. The coating conditions shall refer to an inspection and repair plan as specified in Sec.13. For coating systems with a specified coating life of 15 years and without any qualified coating repair procedure, it is acceptable to use the “in seawater” S-N curve as a representative fatigue curve throughout a service life of 20 years.
10) The corrosion allowance shall be considered in all limit state analyses. Fatigue calculations can be based on a steel wall thickness equal to the thickness that corresponds to half the allowance over the full service life.
11) The corrosion allowance for closed compartments with seawater shall be established from experience data on a case to case basis.
12) Biocides and scavengers can reduce corrosion in closed compartments.

J 600 Material factors for fatigue

601 The material factor $\gamma_m$ for use with Method (2) is a partial safety factor to be applied to all stress ranges before calculating the corresponding numbers of cycles to failure that are used to obtain the design fatigue damage.

602 The material factor depends on the significance of the structure or structural component with respect to structural integrity and accessibility for inspection and repair.

603 The material factors in Table J3 are given as a function of the corresponding design fatigue factor DFF and are valid for structures or structural components, when the applied number of load cycles during the design life is large, i.e. in excess of $10^7$.

Table J3 Material factors, $\gamma_m$, to be applied to all stress ranges for calculation of design fatigue life

<table>
<thead>
<tr>
<th>DFF</th>
<th>$\gamma_m$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
<td>1.15</td>
</tr>
<tr>
<td>3.0</td>
<td>1.25</td>
</tr>
</tbody>
</table>

J 700 Design requirement

701 The design criterion is

$$D_o \leq 1$$

J 800 Improved fatigue performance of welded structures by grinding

801 The fatigue performance of welds in tubular joints can be improved by grinding. If the critical hotspot is at the weld toe, reduction of the local notch stresses by grinding the weld toe to a circular profile will improve the fatigue performance, as the grinding removes defects and some of the notch stresses at the weld toe.

If the grinding is performed in accordance with Figure 11, an improvement in fatigue life by a factor of 3.5 can be obtained. Further, the scale exponent, $k$, in the S-N curves may be reduced from 0.25 to 0.20.
The following conditions shall be fulfilled when welds in tubular joints are ground:

- A ball type rotary burr shall be used for grinding.
- Final grid marks should be kept small and always be normal to the weld toe.
- The diameter of the ball shall be between 8 and 10 mm. If the brace thickness is less than 16 mm, the diameter of the grinder may be reduced to 6 mm.
- The edges between the ground profile and the brace/chord shall be rounded, i.e. no sharp edges are allowed.
- If the weld toe grinding shall not be performed on the complete circumference of the joint, a smooth transition between the ground profile and the non-ground weld shall be ensured.
- The ground surface shall be proven free of defects by an approved NDT method, e.g. MPI.
- The depth of grinding shall be 0.5 mm below any visible undercut. However, the grinding depth is not to exceed 2 mm or 5% of wall thickness whichever is less.

If weld toe grinding is performed on “old” joints according to the above specification, these joints can be considered as ‘new-born’ when their fatigue lives are to be predicted.

The fatigue performance of girth welds can be improved by grinding. Grinding of girth welds will increase the fatigue life of the welded connection if performed according to the conditions specified in Figure 12.

If the grinding is performed as shown to the right in Figure 12 and the below conditions are fulfilled, an improved S-N curve may be applied for the weld toe. If the weld root is ground according to the same principles, an improved S-N curve may also be applied for the weld root. The SCF due to fabrication tolerances and geometry such as tapering shall still be applied, see also Appendix C.

- Final grid marks should be kept small and always be normal to the weld toe.
- The largest radius possible considering the actual geometry shall be selected.
- The edges between the ground profile and the brace/chord shall be rounded, i.e. no sharp edges are allowed.
- If the weld toe grinding shall not be performed on the complete circumference of the joint, a smooth transition between the ground profile and the non-ground weld shall be ensured.
- The ground surface shall be proven free of defects by an approved NDT method, e.g. MPI.
- The depth of grinding shall be 0.5 mm below any visible undercut. However, the grinding depth is not to exceed 2 mm or 5% of wall thickness whichever is less.

**Guidance note:**

The following improved S-N curves can be applied for girth welds if grinding is carried out according to the above specifications:

For ground girth welds in air:

\[
\log a = 12.592 \text{ and } m = 3 \text{ for } N < 10^7, \quad k = 0.15 \\
\log a = 16.320 \text{ and } m = 5 \text{ for } N > 10^7, \quad k = 0.15
\]

(Curve ‘C’/Curve 125)

For girth welds in seawater with adequate cathodic protection:

\[
\log a = 12.192 \text{ and } m = 3 \text{ for } N < 10^6, \quad k = 0.15 \\
\log a = 16.320 \text{ and } m = 5 \text{ for } N > 10^6, \quad k = 0.15
\]

(Curve ‘C’/Curve 125)
SECTION 8
DETAILED DESIGN OF OFFSHORE CONCRETE STRUCTURES

A. General

A 100 Introduction

101 For detailed design of offshore wind turbine concrete structures, DNV-OS-C502, “Offshore Concrete Structures” shall apply together with the provisions of this section. Alternatively, other standards can be used as specified in Sec.1 A400. It is the responsibility of the designer to document that the requirements in Sec.1 A400 are met.

102 The loads that govern the design of an offshore wind turbine concrete structure are specified in Sec.4 and Sec.5. SLS loads for offshore wind turbine concrete structures are defined in this section. Details regarding the process of determining the load effects within the concrete structure can be found in DNV-OS-C502.

103 Sec.8 in general provides requirements and guidance which are supplementary to the provisions of DNV-OS-C502. Hence, Sec.8 shall be considered application text for DNV-OS-C502 with respect to offshore wind turbine concrete structures. For all design purposes, the user should always refer to the complete description in DNV-OS-C502 together with this section.

104 Sec.8 in particular provides requirements and guidance for how to use EN standards as a supplement to DNV standards for design of offshore concrete structures. Such use of EN standards as a supplement to DNV standards shall be carried out according to the requirements in Sec.1 A400.

A 200 Material

201 The requirements to materials given in DNV-OS-C502 Sec.4 and in Sec.6 of this standard shall apply for structures designed in accordance with this section.

A 300 Composite structures

301 For design of composite structures such as pile-to-sleeve connections and similar connections, the requirements given in DNV-OS-C502 Sec.5 A500 shall be supplemented by the requirements given in Sec.9.

B. Design Principles

B 100 Design material strength

101 In design by calculation according to DNV-OS-C502 together with this standard, the design material strength shall be taken as a normalized value of the in-situ strength divided by a material factor \( \gamma_m \) (ref. DNV-OS-C502 Sec.6 B600 and Sec.8 B103 in this standard).

Guidance note:
It is important to note that the partial safety factor \( \gamma_m \) for material strength of concrete shall be applied as a divisor on the normalized compressive strength \( f_{cn} \) and not as a divisor on the characteristic compressive strength defined as the 5% quantile in the probability distribution of the compressive strength of concrete. The normalized compressive strength and the characteristic compressive strength are not necessarily the same.

---end-of-Guidance-note---

102 For wind turbine structures, Young’s Modulus for concrete shall be taken equal to the characteristic value \( E_{ck} \), both for the serviceability limit state and for the fatigue limit state (ref. DNV-OS-C502 Sec.6 B605).

103 The material factors, \( \gamma_m \), for concrete and reinforcement for offshore wind turbine concrete structures are given in Table B1.

Guidance note:
It is noted that the requirements to the material factor for ULS design as specified in Table B1 are somewhat lower than the corresponding requirements in DNV-OS-C502. This difference merely reflects that DNV-OS-C502 is meant for design to high safety class (manned structures with large consequence of failure) whereas DNV-OS-J101 aims at design to normal safety class (unmanned structures, structures with small consequences of failure).

---end-of-Guidance-note---

Table B1 Material factors for concrete and reinforcement

<table>
<thead>
<tr>
<th>Limit State</th>
<th>ULS</th>
<th>FLS</th>
<th>SLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforced Concrete, ( \gamma_c )</td>
<td>1.2 ((1.35)) (^2)</td>
<td>1.1 ((1.20)) (^2)</td>
<td>1.0</td>
</tr>
<tr>
<td>Reinforcement, ( \gamma_s )</td>
<td>1.1 ((1.2)) (^2)</td>
<td>1.00 ((1.10)) (^2)</td>
<td>1.0</td>
</tr>
<tr>
<td>Plain Concrete, ( \gamma_c )</td>
<td>1.45 ((1.7)) (^2)</td>
<td>1.25 ((1.50)) (^2)</td>
<td>1.0</td>
</tr>
</tbody>
</table>

1) When the design is to be based on dimensional data that include specified tolerances at their most unfavourable limits, structural imperfections, placement tolerances as to positioning of reinforcement, then these material factors can be used. When these factors are used, then any geometric deviations from the “approved for construction” drawings must be evaluated and considered in relation to the tolerances used in the design calculations.

2) Design with these material factors allows for tolerances in accordance with DNV-OS-C502 Sec.6 C400 or, alternatively, tolerances for cross sectional dimensions and placing of reinforcements that do not reduce the calculated resistance by more than 10 percent. If the specified tolerances are in excess of those given in DNV-OS-C502 Sec.6 C400 or the specified tolerances lead to greater reductions in the calculated resistance than 10 percent, then the excess tolerance or the reduction in excess of 10 percent is to be accounted for in the resistance calculations. Alternatively, the material factors may be taken according to those given under 1).
C. Basis for Design by Calculation

C 100 Concrete grades and in-situ strength of concrete

101 In DNV-OS-C502 Sec.6 C100 normal weight concrete has grades identified by the symbol C and lightweight aggregate concrete grades are identified by the symbol LC. The grades are defined in DNV-OS-C502 Sec.6 Table C1 as a function of the Characteristic Compressive Cylinder strength of the concrete, $f_{ck}$. However, the grade numbers are related to the Characteristic Compressive Cube strength of the concrete, $f_{ck}$ (100 mm cube).

Guidance note:
Care shall be taken when using the notations C and LC. Other standard systems (e.g. EN standards) use the notation C in relation to characteristic compressive cylinder strength.

---end-of-Guidance-note---

D. Bending Moment and Axial Force (ULS)

D 100 General

101 For design according to EN 1992-1-1:2004 in the Ultimate Limit State the strength definition can be used from the EN standard together with the general material factors (ref. EN 1992-1-1: 2004, Table 2.1N).

E. Fatigue Limit State

E 100 General

101 For fatigue design according to EN standards, the cumulative fatigue damage in the Fatigue Limit State shall be determined according to DNV-OS-C502, which takes into account fatigue under wet conditions.

F. Accidental Limit State

F 100 General

101 According to DNV-OS-C502, structures classified in Safety Classes 2 and 3 (see DNV-OS-C502 Sec.2 A300) shall be designed in such a way that an accidental load will not cause extensive failure. Support structures and foundations for offshore wind turbines are in this standard defined to belong to Safety Class 2.

G. Serviceability Limit State

G 100 Durability

101 When the formula in DNV-OS-C502 Sec.6 O206 for the nominal crack width ($w_k = w_{ck} \cdot (c_1 / c_2) > 0.7 \cdot w_{ck}$) is used, the value for $c_2$ shall be taken as given below:

$c_2 = \text{actual nominal concrete cover to the outermost reinforcement (e.g. stirrups)}$

102 For offshore wind turbine concrete structures, the load for crack width calculations is to be taken as the maximum characteristic load that can be defined among the wind and wave climate combinations used for the FLS load cases. The wind and wave climate combinations used for the FLS load cases are specified in Sec.4 Table E1. The characteristic load for a particular combination of wind climate and wave climate is defined as the 90% quantile in the distribution of the maximum load in a 10-minute reference period with this particular climate combination. Based on this, the following procedure can be used to determine the load for crack width calculations:

1) For each considered applicable combination of wind climate and wave climate, at least 6 10-minutes time series of load (or load effect) in relevant cross sections shall be calculated by simulation with different seeds.

2) From each of the time series for a particular cross section and a particular combination of wind and wave climate, the maximum load or load effect shall be interpreted.

3) For each relevant cross section and particular combination of wind and wave climate, the mean value and the standard deviation of the interpreted six or more maxima (one from each simulated time series of load or load effect) shall be calculated.

4) For each relevant cross section and particular combination of wind and wave climate, the characteristic load can be calculated as mean value + 1.28 x standard deviation.

5) For each relevant cross section considered, the load for crack width calculation shall be taken as the maximum characteristic load over all applicable combinations of wind and wave climate considered.

Guidance note:
Usually it will be sufficient to consider the production and idling load cases i.e. Load Cases 1.2 and 6.4 according to Sec.4, Table E1.

---end-of-Guidance-note---

103 In order to fulfil the requirements of DNV-OS-C502 Sec.6 O213, the strain in the reinforcement shall be calculated for an SLS load which shall be set equal to the characteristic extreme ULS load and it shall be substantiated that this strain does not exceed the yield strain of the reinforcement.

G 200 Crack width calculation

201 Crack widths shall be calculated in accordance with the method described in DNV-OS-C502 Sec.6 O700 and DNV-OS-C502 Appendix F. Let $\epsilon_{sm}$ denote the mean principal tensile strain in the reinforcement over the crack’s influence length at the outer layer of the reinforcement. Let $\epsilon_{cm}$ denote the mean stress-dependent tensile strain in the concrete at the same layer and over the same length as $\epsilon_{sm}$.

For estimation of ($\epsilon_{sm} - \epsilon_{cm}$) the following expression shall be used:

$$(\epsilon_{sm} - \epsilon_{cm}) = \frac{\sigma_s}{E_{sk}} (1 - \beta \frac{\sigma_r}{\sigma_s})$$

where:

$\sigma_r = \text{the stress in reinforcement at the cracked calculated for the actual load.}$

$\sigma_{sr} = \text{the stress in reinforcement at the cracked calculated for the load for which the first crack is developed.}$

$\epsilon_{cm}$ the normalised structural tensile strength, $\epsilon_{cm}$ according to DNV-OS-C502 Sec.6 Table C1.

$\sigma_r \leq \sigma_{sr}$

202 For guidance on how to calculate the free shrinkage strain of the concrete, $\epsilon_{CS}$ reference is made to NS 3473:2003, Section A9.3.2.

203 For design according to EN standards the crack width formulae in EN 1992-1-1:2004 can be used with the following prescribed coefficient values which will yield results similar to results according to DNV-OS-C502:

a) $h_{ref}$ shall be defined according to DNV-OS-C502 Appendix F

b) $k_s$ shall be defined according to DNV-OS-C502 Appendix F
c) $k_3$ shall as a minimum be taken as 1.36

d) $k_4$ shall be taken as 0.425

**Guidance note:**
For crack width calculation according to EN 1992-1-1:2004 with the prescribed coefficient values, the crack width criterion can be taken according to DNV-OS-C502.

---end---of---Guidance---note---

**G 300  Other serviceability limit states**

**301** Limitations of stresses in the concrete (ref. DNV-OS-C502 Sec 6 O802) are also governing for concrete wind turbine support structures with normal reinforcement. The SLS load to be considered is the load defined for the crack width calculation in G201.

---end---of---Guidance---note---

**H. Detailing of Reinforcement**

**H.100  Positioning**

**101** All shear reinforcements and stirrups shall be anchored outside the main reinforcement (i.e. they shall encircle the reinforcement).

---end---of---Guidance---note---

**J. Construction**

**J.100  General**

**101** Construction shall be performed according to DNV-OS-C502 Sec.7, if necessary together with other relevant standards as stated in DNV-OS-C502 Sec.7 A201.

**102** For structures designed according to other standards systems (e.g. EN standards) the construction standards in the actual system shall be also be applied.

**J.200  Inspection classes**

**201** In general, inspection class IC2, “Normal inspection”, (see DNV-OS-C502 Sec.7 D201) applies for offshore wind turbine concrete structures.

**202** For construction according to EN 13670-1:2000, Inspection Class 2 applies for offshore wind turbine concrete structures.

---end---of---Guidance---note---
SECTION 9
DESIGN AND CONSTRUCTION OF GROUTED CONNECTIONS

A. Introduction

100 General

101 The requirements in this section apply to grouted tubular connections in steel support structures for offshore wind turbines.

Guidance note:

Until a new revision of DNV-OS-J101 become available, see page 3, the following guidance on design of grouted connections apply:

— Grouted connections with plane sections (without shear keys) with constant radius over the height of the connection (pile and transition piece) should be designed with a low utilisation ratio (UR = design shear stress divided by the design ultimate capacity = $\frac{\text{Rs}}{\text{Rs}}$) with respect to axial capacity if the design methodology described in B102 is followed. By a low utilisation ratio is understood $\text{UR} \leq 0.200/R_p$, where $R_p$ is given in mm.

— Grouted connections with a conical geometry on the pile and the transition piece should be designed with a utilisation ratio $\text{UR} \leq 1.0$. By conical connections are here understood cones with angles in the order of 1° or larger where the vertical capacity can be documented by well defined structural mechanics.

— The long term friction coefficient between steel and grout applied in design should not exceed 0.4, unless documented otherwise.

102 Grouted tubular connections are structural connections, which consist of two concentric tubular sections where the annulus between the outer and the inner tubular has been filled with grout. Typical grouted connections used in offshore wind turbine support structures consist of pile-to-sleeve or pile-to-pile structure grouted connections, single- or double-skin grouted tubular joints, and grout-filled tubes.

Guidance note:

In steel monopile support structures, grouted connections typically consist of pile-to-sleeve connections. In tripod legs, pile-to-pile structure grouted connections are typically used.

103 Types of grouted connections not specifically covered by this standard shall be specially considered.

104 All relevant factors which may influence the strength of a grouted connection are to be adequately considered and accounted for in the design.

Guidance note:

The strength of grouted connections may depend on factors such as:

- grout strength and modulus of elasticity
- tubular and grout annulus geometries
- application of mechanical shear keys
- grouted length to pipe-diameter ratio
- surface conditions of tubular surfaces in contact with grout
- grout shrinkage or expansion
- load history (mean stress level, stress ranges).

105 Grout materials are to comply with the requirements given in Sec.6 B “Selection of Concrete Materials” and Sec.6 C “Grout Materials and Material Testing” as relevant.

106 Grouted connections in wind turbine support structures must be designed for the ULS and the FLS load combinations specified in Sec.5 for the loads specified in Sec.4.

A 200 Design principles

201 Design rules for grouted connections are given for axial loading combined with torque and for bending moment combined with shear loading, respectively.

Guidance note:

Long experience with connections subjected to axial load in combination with torque exists, and parametric formulae have been established for design of connections subjected to this type of loading. For connections subjected to bending moment and shear force, no parametric design formulae have yet been established. Therefore, detailed investigations must be carried out for such connections.

202 For design of grouted connections, it may be conservative to assume that axial load and bending moment do not interact. When it can be demonstrated for a grouted connection that it will be conservative to assume that axial load and bending moment do not interact, the grouted connection shall satisfy two separate requirements. The first requirement to satisfy is the capacity requirement specified for the combined action of axial load and torque under the assumption of no concurrently acting bending moment and shear force. The second requirement to satisfy is the capacity requirement specified for the combined action of bending moment and shear force under the assumption of no concurrently acting axial force and torque.

203 When shear stresses in grouted connections of piles subjected to axial load are calculated, due account shall be taken of the distribution of global loads between the various piles in a group or cluster of piles. Analyses of the connections are to take account of the highest calculated load with due consideration of the possible range of in-situ soil stiffness.

204 A grouted connection can be established with or without shear keys as shown in Figure 1.

Guidance note:

Shear keys can reduce the fatigue strength of the tubular members and of the grout due to the stress concentrations around the keys. If shear keys are used in a grouted connection subjected to bending, they should be placed at the mid level of the connection in order to minimise the influence on the fatigue damage, because the maximum grout stresses from bending will develop at the top and the bottom of the grout member.

205 The distance between the mean seawater level (MSL) and the connection has to be considered in the early design phase since it may have great influence on the behaviour of the connection.

Guidance note:

The location of the connection relative to MSL may influence the shrinkage of the grout, the size of the bending moment in the connection, the fatigue performance of the connection, and the grouting operation.

206 A grouted connection in a monopile can be constructed with the transition piece placed either inside or outside the foundation pile.

Guidance note:

Traditionally the transition piece is located outside the foundation pile for connections near MWL. This is mainly to be able to mount accessories like boat landing and to paint the structure...
B. Ultimate Limit States

B 101 Connections subjected to axial load and torque

101 The characteristic ultimate capacity of axially loaded grouted tubular connections is defined as the mean value of the distribution of the ultimate capacity. The design ultimate capacity is defined as the characteristic ultimate capacity divided by a material factor $\gamma_m$.

102 The characteristic ultimate capacity of axially loaded grouted tubular connections may be calculated according to the method given in DNV Rules for Fixed Offshore Installations, January 1998. The method is reproduced in the guidance note with torque included.

Guidance note:
The shear stress to be transferred in an axially loaded connection is:

$$\tau_{sa} = \frac{P}{2 \cdot R_p \cdot \pi \cdot L}$$

where:

$\tau_{sa}$ = shear stress in axially loaded connection
$P$ = axial force from factored load actions
$R_p$ = pile outer radius (see Figure 1)
$L$ = effective grouted connection length.

The shear stress to be transferred in a connection subjected to torque is:

$$\tau_{st} = \frac{M_T}{2 \cdot R_p \cdot \pi \cdot L}$$

where:

$\tau_{st}$ = shear stress in torsionally loaded connection
$M_T$ = torque from factored load actions.

For grouted connections with mill rolled surface where the mill scale has been removed completely by corrosion or mechanical means, the following simplified design equations may be used. The ultimate strength is the lesser of the interface shear strength and the grout matrix strength.

The interface shear strength due to friction may be taken as:

$$\tau_{kf} = \frac{\mu \cdot E}{K} \left[ \frac{\delta}{R_p} \right]$$

The interface shear strength due to shear keys may be taken as:

$$\tau_{ks} = \frac{\mu \cdot E}{K} \left[ \frac{h}{21 \cdot s} \cdot \frac{t_{g,4}}{\sqrt{R_p}} \cdot \frac{t_p}{L} \right] \cdot N$$

where:

$\tau_{kf}$ = characteristic interface shear strength due to friction
$\tau_{ks}$ = characteristic interface shear strength due to shear keys
$\mu$ = grout to steel interface coefficient of friction to be taken as 0.4 to 0.6 for corroded or grit blasted steel surfaces with the mill scale removed.
$\delta$ = height of surface irregularities to be taken as 0.00037 $R_p$ for rolled steel surfaces
$N$ = number of shear keys

$R_s$ = sleeve outer radius
$t_s$ = wall thickness of sleeve
$t_p$ = wall thickness of pile
$t_{g,4}$ = thickness of grout
$h$ = shear key outstanding
$s$ = shear key spacing
$E$ = modulus of elasticity for steel $E_g$ = modulus of elasticity for grout $f_{ck}$ = characteristic compressive cylinder strength of the grout. (A conversion from characteristic compressive cylinder strength, $f_{ck}$, to cube strength, $f_{ck}$, can be made according to DNV-OS-C502 Sec.6 Table C1. For a cylinder strength $f_{ck} > 94$ MPa, the cube strength can be taken as $f_{ck} = f_{ck} + 11$ MPa). $K$ shall be given in units of MPa.

Where more precise information is not available, $E_g$ may be taken as equal to 150 $f_{ck}$ MPa.

The above equations have been proven valid within the following limits:

$$5 \leq \frac{R_p}{t_p} \leq 30$$

$$9 \leq \frac{R_s}{t_s} \leq 70$$

$$\frac{h}{s} \leq 0.1$$

$$s > \sqrt{R_p \cdot t_p}$$

The upper limit for the ratio $R_p/t_p$ can be exceeded for low utilization of the axial capacity of the grouted connection. The allowable upper limit for $R_s/t_s$ must be evaluated for the actual connection and the actual utilization.

It is to be noted that when the shear key spacing, $s$, approaches a limit of

$$\sqrt{R_p \cdot t_p}$$

no further significant increase in strength may be obtained by decreasing the shear key spacing.

The capacity of the grout matrix may be taken as:

$$\tau_{kg} = \kappa \cdot \frac{R_p}{t_p} \cdot \left( 1 - e^{-2L/R_p} \right)$$

where:

$\tau_{kg}$ = characteristic shear strength of the grout
$\kappa$ = early age cycling reduction factor

$$= 1 - 3 \cdot \sqrt{\Delta/R_p}$$

for

$$s / \sqrt{R_p \cdot t_p} < 3$$

and

$$= 1$$

for

$$s / \sqrt{R_p \cdot t_p} \geq 3$$

$\Delta$ = early age cycling movement.
There is only modest test experience of early age cycling effects such as will be caused by relative movement between pile and sleeve due to wave action during setting of the grout. The above equations are for initial estimation only. It will be necessary to verify the performance of the specimens subject to early age cycling effects with ad hoc tests.

The shear stress in an axially and torsionally loaded connection without shear keys shall satisfy:

$$\sqrt{\frac{\tau_{sa}}{\gamma_m}}^2 + \frac{\tau_{st}}{\gamma_m}^2 \leq \frac{\tau_k}{\gamma_m}$$

where:

\(\tau_k\) = characteristic shear strength of the connection,
\(\min (\tau_{kF}, \tau_{kG})\)
\(\gamma_m\) = the material factor according to D200.

The shear stress in an axially and torsionally loaded connection with shear keys perpendicular to the circumference of the tubulars shall satisfy the following three requirements:

$$\frac{\tau_{sa}}{\gamma_m} \leq \frac{\tau_{ks}}{\gamma_m}$$

$$\frac{\tau_{st}}{\gamma_m} \leq \frac{\tau_{kf}}{\gamma_m}$$

$$\sqrt{\frac{\tau_{sa}}{\gamma_m}^2 + \frac{\tau_{st}}{\gamma_m}^2} \leq \frac{\tau_{ks}}{\gamma_m} + \frac{\tau_{kf}}{\gamma_m}$$

If the torque can be considered negligible \((\tau_s = 0)\), then the shear stress from the axial load shall satisfy the following requirement:

$$\frac{\tau_{sa}}{\gamma_m} \leq \frac{\tau_{ks}}{\gamma_m} + \frac{\tau_{kf}}{\gamma_m}$$

---end---of---Guidance---note---

201 For grouted connection subjected to bending moment and shear loading, the grout will mainly be exposed to radial stresses given a sufficient length-to-pile-diameter ratio.

**Guidance note:**

The length-to-pile-diameter ratio \((L/D)\) of the connection should typically be in the order of \(L/D \approx 1.5\) to ensure that the bending moment is safely transferred by radial stresses in the grout.

Due to load transfer by radial stresses, no shear keys in pile-to-sleeve connections are necessary to transfer the moment.

For a pile-to-sleeve connection, for example for a monopile support structure, relatively high loads must be transferred in the grouted connection. Due to this, it is most likely that such connections require the use of high strength grout (i.e. compressive strength in excess of 65 MPa).

---end---of---Guidance---note---

202 The ultimate strength capacity of grouted connections shall be documented. This documentation shall include a buckling check. The documentation of the ultimate strength capacity may be carried out by the use of non-linear finite element (FE) analyses. However, both the connection modelling and the solution methodology should be calibrated to experimental data in cases where no prior knowledge or experimental data exists.

**Guidance note:**

The FE analyses should as a minimum represent the interaction between the grout and the steel. Further the FE analyses could include the buckling check for the steel tubes by including non-linear geometric effects.

For FE analyses guidelines and recommendations stated by the manufacturer of the FE program applied, such as in user’s manuals, should always be followed.

FE analyses of the grouted connection shall be modelled with double contact interfaces between the grout and the steel tubes (both sides of the grout member).

FE analyses shall be carried out both with and without contact friction on surfaces without shear keys. Friction coefficients should be in the order of 0.4 to 0.6, if not documented by testing. The effect of slip should be included in the contact formulation when the friction is present.

The mesh size on the contact surfaces shall account for the non-linear stress singularities at the surface edges. The mesh size shall therefore ensure that contact occurs on minimum 3 elements in the slip direction. Further, the element edge aspect ratio on the contact surfaces should not exceed 1:5.

The grout elements should as a minimum be linear 8-node solid elements with 3 translation degrees of freedom. Through the thickness of the grout member, a minimum of two first-order elements, or alternatively one second-order element, should be applied.

The constitutive model for the grout should account for the non-linear behaviour of the grout. The non-linear properties to be regarded are e.g. the difference in compressive and tensile strength, possible cracking due to tension and effects from confinement. In general, cracking of the grout will not be a problem for a grouted connection. Cracking, if any, will appear vertically to the circumference of the connection due to hoop stresses in the grout. Since the loads on the connection will be transferred through radial stresses in the grout, possible cracking will not change the load transfer significantly. Possible cracking should, however, be included in the constitutive model for the grout to give the most precise representation of the material.

The steel elements should as a minimum be modelled with first-order shell elements with 5 integration points through the thickness.
The element choice for the steel tubes and the grout shall together provide a consistent deformation field.

If shrinkage can be expected this should be accounted for in the model.

The input and output for the FE model must be documented thoroughly by relevant printouts and plots. The input shall as a minimum be documented by input file and plots showing geometry, boundary conditions and loads. The output shall as a minimum be documented by plots showing total stresses (von Mises stresses in steel and Tresca stresses in grout) together with plots showing principal stresses and strains.

---end---of---Guidance---note---

### 203 In the ultimate limit state, the stresses in the grout, expressed as Tresca stresses, shall satisfy the following requirement:

\[
f_s \leq \frac{f_{\text{ck}}}{\gamma_m}
\]

where:

- \(f_s\) = Tresca stress in the grout,
- \(f_{\text{ck}}\) = characteristic compressive cylinder strength of the grout,
- \(\gamma_m\) = material factor according to D200.

This approach will in general be conservative.

### 204 Alternatively, the ultimate strength capacity can be documented by calculations using the design grout strength and allowing for plastic distribution of stresses.

---end---of---Guidance---note---

### C. Fatigue Limit States

#### C 100 General

101 The fatigue strength of the grout in the grouted connections subjected to bending moment shall be based on codes for grout and concrete. The documentation of the fatigue strength capacity of grouted connections may be carried out by means of non-linear finite element (FE) analyses. However, both the connection model and the solution methodology should be calibrated to experimental data in cases where no prior knowledge or experimental data exists.

**Guidance note:**

The guidance note in B202 applies.

For determination of stresses in the fatigue limit state, the peak stresses can be averaged over a length of about 100 mm.

---end---of---Guidance---note---

102 A characteristic long-term stress cycle history shall be established for the grouted connection. All significant stress cycles, which contribute to fatigue damage in the structure during its design lifetime, shall be considered. Each stress cycle is characterised by its mean stress and its stress range. The design lifetime shall be based on the specified service life of the structure. If a service life is not specified, 20 years should be used.

---end---of---Guidance---note---

### C 200 Connections subjected to axial load and torque

201 The fatigue strength of axially loaded grouted connections is to be based on relevant test data or experience relevant for the actual properties of the connection. Provided a grouted connection, exposed to environmental loading as the only form of dynamic loading, is designed to comply with the ultimate strength requirements of B101 no further check will be required for fatigue strength of a grouted connection only subjected to axial load and torque.

### C 300 Connections subjected to bending moment and shear loading

301 The accumulated damage, \(D\), for the long-term stress cycle history shall be calculated using the Palmgren-Miner summation and is required not to exceed 1.0:

\[
D = \sum \frac{n_i}{N_i} \leq 1
\]

where:

- \(n_i\) = number of stress cycles for the actual combination of mean stress and stress range (applied number of stress cycles at \(i\)th stress combination over design life)
- \(N_i\) = allowable number of cycles for the actual combination of mean stress and stress range (number of cycles to failure at \(i\)th stress combination)
- \(j\) = total number of combinations of mean stress and stress range in a suitable discretisation of the mean stress and stress range plane.

**Guidance note:**

When it can be demonstrated that the compressive stresses in the fatigue-critical sections of a high-strength grout member are predominantly unidirectional, the calculations of the accumulated damage can be carried out according to FIB/CEB SR90/1, Bulletin d’Information No. 197, “High Strength Concrete”, 1990.

First calculate an intermediate value \(N_f\) for the number of cycles to failure:

\[
\log_{10} N_f = \left(12 + 16 S_{\text{min}} + 8 S_{\text{min}}^2\right) \cdot \left(1 - S_{\text{max}}\right)
\]

The number of cycles to failure \(N\) can then be calculated according to the following S-N curve:

\[
\log_{10} N = \begin{cases} 
\log_{10} N_f & \text{for } 0 \leq \log_{10} N_f \leq 6 \\
[\log_{10} N_f \cdot (1 + 0.2 \cdot (\log_{10} N_f - 6))] & \text{for } \log_{10} N_f > 6
\end{cases}
\]

An endurance limit is defined for stress ranges \(\Delta S < 0.30 - 0.375 S_{\text{min}}\). For these stress ranges, an infinite number of cycles to failure applies and overrides the value of \(N\) resulting from the above expressions.

**Definitions:**

- \(f_{\text{ck}}\) = design fatigue strength, \(f_{\text{ck}}/\gamma_m\)
- \(S_{\text{max,f}}\) = maximum compressive stress in cycle
- \(S_{\text{min,f}}\) = minimum compressive stress in cycle
- \(S_{\text{max}}\) = max. relative stress, i.e. \(S_{\text{max,f}}/f_{\text{ck}}\)
- \(S_{\text{min}}\) = min. relative stress, i.e. \(S_{\text{min,f}}/f_{\text{ck}}\)
- \(\Delta S\) = stress range, \(S_{\text{max}} - S_{\text{min}}\)
- \(\gamma_m\) = material factor for the FLS to be taken according to D200.
D. Requirements to Verification and Material Factors

D 100 Experimental verification

101 If no sufficient documentation of the behaviour of a grouted connection is available, experimental verification of the behaviour must be carried out.

D 200 Material factors for grouted connections

201 To account for uncertainties in the strength of the grouted connections, including but not limited to natural variability and uncertainties due to the offshore grouting operations, the material factor $\gamma_m$ is in general to be taken as:

$$
\gamma_m = \gamma_1 \cdot \gamma_2 \cdot \gamma_3 \cdot \gamma_4
$$

where the following definitions and requirements apply:

- $\gamma_1 = 1.25$ factor to account for the possible deviation between in-situ strength and laboratory test specimen strength due to inferior in-situ compaction and curing.
- $\gamma_2 = 1.18$ factor to account for the combined effect of long term duration loading and the use of a rectangular, constant stress distribution in the calculations.
- $\gamma_3 = 1.18$ factor to account for an extra safety for higher-grade concrete due to possible less ductility of higher-strength concrete.
- $\gamma_4 = 1.5$ is the material factor to account for the statistical variation in the compressive strength.

When these four factors are applied with their required values, the “overall material factor” for concrete fatigue design $\gamma_m = 1.25 \cdot 1.18 \cdot 1.18 \cdot 1.5 = 2.6$ is obtained as required in 201.

202 For the FLS, the material factor $\gamma_m$ can be expressed as a product of four factors,

$$
\gamma_m = \gamma_1 \cdot \gamma_2 \cdot \gamma_3 \cdot \gamma_4
$$

where the following definitions and requirements apply

- $\gamma_1 = 1.25$ factor to account for the possible deviation between in-situ strength and laboratory test specimen strength due to inferior in-situ compaction and curing.
- $\gamma_2 = 1.18$ factor to account for the combined effect of long term duration loading and the use of a rectangular, constant stress distribution in the calculations.
- $\gamma_3 = 1.18$ factor to account for an extra safety for higher-grade concrete due to possible less ductility of higher-strength concrete.
- $\gamma_4 = 1.5$ is the material factor to account for the statistical variation in the compressive strength.

Provided that the actual in-situ concrete compressive strength and the grouting operation are documented and further verified on site, and that the stress distribution in the grout is particularly well-controlled, a lower material factor $\gamma_m$ than 2.6 required in 201 can be accepted for design in the FLS. The reduced requirement to $\gamma_m$ is expressed in terms of reduced requirements to the factors $\gamma_1$ and $\gamma_2$.

Provided that the actual in-situ concrete compressive strength, the grouting procedure and the grouting operation are documented and further verified on site, the factor $\gamma_1$ can be taken as 1.0.

The following two conditions shall be fulfilled before the requirement to $\gamma_1$ can be reduced to 1.0:

- The certifying body shall verify the grouting operation, the compressive testing of grout samples and the documentation for the operation and the tests. The verification shall be carried out by surveys and documentation reviews.
- The compressive testing shall be carried out on grout samples which are representative of the grout in situ and which lead to compressive strengths representative of the compressive strength in situ.

In order to obtain compressive strengths representative of the compressive strength in situ, when the reduced $\gamma_1 =1.0$ is applied and it is unfeasible or should be avoided to obtain drilled samples of the grout in situ, it suffices to carry out the compressive tests on samples obtained from the emerging, surplus grout.

Guidance note:
The grouting procedures should always be verified and the compressive strength of the grout should always be tested, even when the unreduced $\gamma_1 = 1.25$ is applied. When the unreduced $\gamma_1 = 1.25$ is applied, it suffices to obtain the grout samples for compressive testing from the grout mixer.

---e-n-d---of---G-u-i-d-a-n-c-e---n-o-t-e---

As the fatigue loading is short term duration loading from the wind turbine and waves, the factor $\gamma_2$ can be reduced to 1.0 if the stress check is based on Gauss stresses including local...
stress concentrations derived from the Finite Element Analysis performed. However, if the fatigue limit state peak stresses have been averaged over a length of 100 mm, as recommended in the guidance note in C101, the factor $\gamma_2$ shall remain equal to 1.18.

The factors $\gamma_3$ and $\gamma_4$ always have to be applied with the values specified in 202.

E. Grouting Operations

E 100 General

101 The grouting operations of connections are to comply with relevant requirements given in DNV-OS-C502 Sec.7 together with the requirements given for concrete in Sec.8 of this standard.

102 It is to be ensured that the grouting system has sufficient venting capacity to enable air, water and surplus grout to be evacuated from the annuli and compartments required to be grout filled at a rate exceeding the filling rate of grout.

103 Injection of grout shall be carried out from the bottom of the annulus. Complete filling of the annulus is to be confirmed by grout overfill at top of grout connection or at top outlet hole.

104 Sufficient strength of formwork or similar (e.g. an inflatable rubber seal) must be ensured.

105 To avoid casting joints in the grout member, the grouting should be carried out in one process.

106 Sufficient material of acceptable quality is to be available at the start of a grouting operation to enable fabrication of grout for the biggest compartment to be grouted. A reliable system for replenishment of accepted material according to the consumption rate is to be established.

107 Adequate back-up equipment for the grouting process must be available before the process is initiated.

108 The temperature of all surroundings (air, water, steel structures etc.) must be between $5^\circ C$ and $35^\circ C$ during the grouting operation.

109 In general, piling operations are not to be performed after commencement of pile-grouting operations.

E 200 Operations prior to grouting

201 Prior to commencement of grouting operations, the properties of the proposed grout mix are to be determined by appropriate qualification tests according to a recognised code or standard, see also Sec.6 C.

202 All steel surfaces must be clean before grouting. Before positioning of the tubes, the surfaces must be checked for grease, oil, paint, marine growth etc. and cleaned if necessary.

E 300 Monitoring

301 Parameters considered as important for controlling the grouting operation are to be monitored prior to and during the grouting operation. Records are to be kept of all monitored parameters. These parameters are normally to include:

- results from qualification tests for grout mix
- results from grout tests during operation
- records of grout density at mixer and of total volumes pumped for each compartment or annulus
- records from differential pressure measurements, if applicable
- observation records from evacuation points
- records of grout density at evacuation points or density of return grout
- results from compressive strength testing.

302 Means are to be provided for observing the emergence of grout from the evacuation point from the compartment/annulus being grouted.

303 During fabrication of grout, regular tests are to be carried out for confirming of the following properties:

- density
- air content
- viscosity
- workability
- bleeding
- temperature of grout
- compressive strength.

Guidance note:

A Grouting Procedure including the Quality Control Scheme for the grout operation is to be worked out. The Quality Control Scheme shall name the responsible companies or personnel for each grouting operation activity. The density and air content are normally to be checked manually every half hour. The viscosity, workability, bleeding and temperature are to be checked once every two hours or once per compartment or annulus to be grouted if the grouting takes less than two hours.

---end-of-Guidance-note---
SECTION 10
FOUNDATION DESIGN

A. General

A 100 Introduction

101 The requirements in this section apply to pile foundations, gravity type foundations, and stability of sea bottom.
102 Foundation types not specifically covered by this standard shall be specially considered.
103 Design of foundations shall be based on site-specific information, see Sec.3.
104 The geotechnical design of foundations shall consider both the strength and the deformations of the foundation structure and of the foundation soils.

This section states requirements for

— foundation soils
— soil reactions upon the foundation structure
— soil-structure interaction.

Requirements for the foundation structure itself are given in Sec.7 to Sec.9 as relevant for a foundation structure constructed from steel and/or concrete.

105 A foundation failure mode is defined as the mode in which the foundation reaches any of its limit states. Examples of such failure modes are

— bearing failure
— sliding
— overturning
— pile pull-out
— large settlements or displacements.

106 The definition of limit state categories as given in Sec.2 is valid for foundation design with the exception that failure due to effect of cyclic loading is treated as an ultimate limit state (ULS), alternatively as an accidental limit state (ALS), using partial load and material factors as defined for these limit state categories. The load factors are in this case to be applied to all cyclic loads in the design load history. Lower load factors than prescribed in Sec.5 may be accepted if the total safety level can be demonstrated to be within acceptable limits.

107 The load factors to be used for design related to the different categories of limit states are given in Sec.5.

108 The material factors to be used are specified in the relevant subsection for design in this Section. The characteristic strength of soil shall be assessed in accordance with item 300.

109 Material factors shall be applied to soil shear strength as follows:

— for effective stress analysis, the tangent to the characteristic friction angle shall be divided by the material factor \( m \);
— for total stress analysis, the characteristic undrained shear strength shall be divided by the material factor \( n \).

For soil resistance to axial pile load, material factors shall be applied to the characteristic resistance as described in C107.

For soil resistance to lateral pile load, material factors shall be applied to the characteristic resistance as described in C106.

110 Settlements caused by increased stresses in the soil due to structural weight shall be considered for structures with gravity type foundations. The risk of uneven settlements should be considered in relation to the tolerable tilt of the wind turbine support structure.

111 Further elaborations on design principles and examples of design solutions for foundation design are given in DNV Classification Notes 30.4.

A 200 Soil investigations

201 Requirements to soil investigations as a basis for establishing necessary soil data for a detailed design are given in Sec.3.

A 300 Characteristic properties of soil

301 The characteristic strength and deformation properties of soil shall be determined for all deposits of importance.

302 The characteristic value of a soil property shall account for the variability in that property based on an assessment of the soil volume that governs the limit state in consideration.

Guidance note:

Variability in a soil property is usually a variability of that property from point to point within a soil volume. When small soil volumes are involved, it is necessary to base calculations on the local soil property with its full variability. When large soil volumes are involved, the effect of spatial averaging of the fluctuations in the soil property from point to point over the soil volume comes into play. Calculations may then be based on the spatially averaged soil property, which eventually becomes equal to the mean of the soil property when the soil volume is large enough.

303 The results of both laboratory tests and in-situ tests shall be evaluated and corrected as relevant on the basis of recognised practice and experience. Such evaluations and corrections shall be documented. In this process account shall be given to possible differences between properties measured in the tests and those soil properties that govern the behaviour of the in-situ soil for the limit state in question. Such differences may be due to:

— soil disturbance due to sampling and samples not reconstructed to in-situ stress history
— presence of fissures
— different loading rate between test and limit state in question
— simplified representation in laboratory tests of certain complex load histories
— soil anisotropy effects giving results which are dependent on the type of test.

304 Possible effects of installation activities on the soil properties should be considered.

305 The characteristic value of a soil property shall be a cautious estimate of the value that affects the occurrence of the limit state, selected such that the probability of a worse value is low.

306 A limit state may involve a large volume of soil and it is then governed by the spatial average of the soil property within that volume. The choice of the characteristic value shall take due account of the number and quality of tests within the soil volume involved. Specific care should be made when the limit state is governed by a narrow zone of soil.

307 The characteristic value of a soil property shall be selected as a lower value, being less than the most probable value, or an upper value being greater, depending on which is worse for the limit state in question.

Guidance note:

Relevant statistical methods should be used. When such methods are used, the characteristic value of a local soil property should

---end-of-Guidance-note---
be derived such that the probability of a worse value governing the occurrence of the limit state is not greater than 5%.

For selection of characteristic values of soil properties by means of statistical methods, reference is made to DNV-RP-C207.

---end---of---Guidance---note---

A 400 Effects of cyclic loading

401 The effects of cyclic loading on the soil properties shall be considered in foundation design where relevant.

402 Cyclic shear stresses may lead to a gradual increase in pore pressure. Such pore pressure build-up and the accompanying increase in cyclic and permanent shear strains may reduce the shear strength of the soil. These effects shall be accounted for in the assessment of the characteristic shear strength for use in design within the applicable limit state categories.

403 In the SLS design condition the effects of cyclic loading on the soil’s shear modulus shall be corrected for as relevant when dynamic motions, settlements and permanent (long-term) horizontal displacements shall be calculated. See also D500.

404 The effects of wave- and wind-induced forces on the soil properties shall be investigated for single storms and for several succeeding storms, where relevant.

405 In seismically active areas, where the structure-foundation system may be subjected to earthquake forces, the deteriorating effects of cyclic loading on the soil properties shall be evaluated for the site-specific conditions and considered in the design where relevant. See also 500.

A 500 Soil-structure interaction

501 Evaluation of structural load effects shall be based on an integrated analysis of the soil and structure system. The analysis shall be based on realistic assumptions regarding stiffness and damping of both the soil and structural members.

502 Due consideration shall be given to the effects of adjacent structures, where relevant.

503 For analysis of the structural response to earthquake vibrations, ground motion characteristics valid at the base of the structure shall be determined. This determination shall be based on ground motion characteristics in free field and on local soil conditions using recognised methods for soil and structure interaction analysis.

---end---of---Guidance---note---

B. Stability of Seabed

B 100 Slope stability

101 The risk of slope failure shall be evaluated. Such evaluations shall cover:

---natural slopes
---slopes developed during and after installation of the structure
---future anticipated changes of existing slopes
---effect of continuous mudflows
---wave induced soil movements.

The effect of wave loads on the sea bottom shall be included in the evaluation when such loads are unfavourable.

102 When the structure is located in a seismically active region, the effects of earthquakes on the slope stability shall be included in the analyses.

103 The safety against slope failure for ULS design shall be analysed using material factors ($\gamma_M$):

\[ \gamma_M = \begin{cases} 1.15 & \text{for effective stress analysis} \\ 1.25 & \text{for total stress analysis.} \end{cases} \]

---end---of---Guidance---note---

B 200 Hydraulic stability

201 The possibility of failure due to hydrodynamic instability shall be considered where soils susceptible to erosion or softening are present.

202 An investigation of hydraulic stability shall assess the risk for:

---softening of the soil and consequent reduction of bearing capacity due to hydraulic gradients and seepage forces
---formation of piping channels with accompanying internal erosion in the soil
---surface erosion in local areas under the foundation due to hydraulic pressure variations resulting from environmental loads.

203 When erosion is likely to reduce the effective foundation area, measures shall be taken to prevent, control and/or monitor such erosion, as relevant, see 300.

B 300 Scour and scour prevention

301 The risk for scour around the foundation of a structure shall be taken into account unless it can be demonstrated that the foundation soils will not be subject to scour for the expected range of water particle velocities.

Guidance note:

When a structure is placed on the seabed, the water-particle flow associated with steady currents and passing waves will undergo substantial changes. The local change in the flow will generally cause an increase in the shear stress on the seabed, and the sediment transport capacity of the flow will increase. In the case of an erodible seabed, this may result in a local scour around the structure. Such scour will be a threat to the stability of the structure and its foundation.

---end---of---Guidance---note---

302 The effect of scour, where relevant, shall be accounted for according to at least one of the following methods:

(a) Adequate means for scour protection is placed around the structure as early as possible after installation.

(b) The foundation is designed for a condition where all materials, which are not scour-resistant, are assumed removed.

(c) The seabed around the structure is kept under close surveillance and remedial works to prevent further scour are carried out shortly after detection of significant scour.

303 In an analysis of scour, the effect of steady current, waves, or current and waves in combination shall be taken into account as relevant.

Guidance note:

The extent of a scour hole will depend on the dimensions of the structure and on the soil properties. In cases where a scour protection is in place, it will also depend on the design of the scour protection.

---end---of---Guidance---note---

304 Scour protection material shall be designed to provide both external and internal stability, i.e. protection against excessive surface erosion of the scour protection material and protection against transportation of soil particles from the underlying natural soil.

Guidance note:

When scour protection consists of an earth structure, such as a sequence of artificially laid-out soil layers, it must be ensured that standard filter criteria are met when the particle sizes of the individual layers of such an earth structure are selected.

---end---of---Guidance---note---

305 In cases where a scour protection is in place at a foundation structure and consists of an earth structure, the effect of soil support from the scour protection can be taken into
account in the design of the foundation structure. For this purpose, a scour hole in the scour protection material shall be assumed with dimensions equal to those that are assumed in the design of the scour protection for the relevant governing ULS event.

306 A methodology for prediction of scour around a vertical pile that penetrates the seabed is given in Appendix J.

C. Pile Foundations

C 100 General

101 The load-carrying capacity of piles shall be based on strength and deformation properties of the pile material as well as on the ability of the soil to resist pile loads.

102 In evaluation of soil resistance against pile loads, the following factors shall be amongst those to be considered:

— shear strength characteristics
— deformation properties and in-situ stress conditions of the foundation soil
— method of installation
— geometry and dimensions of pile
— type of loads.

103 The data bases of existing methods for calculation of soil resistance to axial and lateral pile loads are often not covering all conditions of relevance for offshore piles. This in particular relates to size of piles, soil shear strength and type of load. When determining the soil resistance to axial and lateral pile loads, extrapolations beyond the data base of a chosen method shall be made with thorough evaluation of all relevant parameters involved.

104 It shall be demonstrated that the selected solution for the pile foundation is feasible with respect to installation of the piles. For driven piles, this may be achieved by a driveability study or an equivalent analysis.

105 Structures with piled foundations shall be assessed with respect to stability for both operation and temporary design conditions, e.g. prior to and during installation of the piles.

Guidance note: For drilled piles, it is important to check the stability of the drilled hole in the temporary phase before the pile is installed in the hole.

106 Unless otherwise specified, the following material factors \( \gamma_M \) shall be applied to the characteristic soil strength parameters for determination of design soil resistance against lateral loading of piles in the ULS and the SLS:

<table>
<thead>
<tr>
<th>Type of geotechnical analysis</th>
<th>Limit state</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ULS</td>
</tr>
<tr>
<td>Effective stress analysis</td>
<td>( \gamma_M )</td>
</tr>
<tr>
<td>Total stress analysis</td>
<td>1.25</td>
</tr>
</tbody>
</table>

107 For determination of design pile resistance against axial pile loads in ULS design, a material factor \( \gamma_M = 1.25 \) shall be applied to all characteristic values of pile resistance, i.e. to characteristic limit skin friction and characteristic tip resistance.

Guidance note: This material factor may be applied to pile foundations of multi-legged jacket or template structures. The design pile loads shall be determined from structural analyses in which the pile foundation is modelled either with an adequate equivalent elastic stiffness or with non-linear models that reflect the true non-linear stress-strain properties of the soil in conjunction with the characteristic soil strength.

108 For drilled piles, the assumptions made for the limit skin friction in design shall be verified during the installation.

Guidance note: The drilling mud which is used during the drilling of the hole for the pile influences the adhesion between the pile and the soil and thereby also the limit skin friction.

109 Laterally loaded piles may be analysed on the basis of realistic stress-strain curves for soil and pile. The pile deflections induced by the combination of lateral and axial loading may be so large that inelastic behaviour of the soil takes place.

110 The lateral resistance of a pile or a pile group may in the ULS be based on the theory of plasticity provided that the characteristic resistance is in accordance with recognised plastic theorems so as to avoid nonconservative estimates of the safety. The calculations are then to be based on the assumption that the lateral deformations of the pile are sufficiently large to plastify the soil completely.

111 When pile penetrations are governed by lateral pile resistance, the design resistance shall be checked with respect to the ULS. For the ULS, material factors as prescribed in 106 shall be used.

112 For analysis of pile stresses and lateral pile head displacements, the lateral pile resistance shall be modelled using characteristic soil strength parameters, with the material factor for soil strength equal to \( \gamma_M = 1.0 \). Non-linear response of soil shall be accounted for, including the effects of cyclic loading.

C 200 Design criteria for monopile foundations

201 For geotechnical design of monopile foundations, both the ultimate limit state and the serviceability limit state shall be considered.

202 For design in the ultimate limit state, design soil strength values are to be used for the soil strength, defined as the characteristic soil strength values divided by the specified materials factor. Design loads are to be used for the loads, each design load being defined as the characteristic load multiplied by the relevant specified load factor. The loads are to be representative of the extreme load conditions. Two cases are to be considered:

— axial loading
— combined lateral loading and moment loading.

203 For axial loading in the ULS, sufficient axial pile capacity shall be ensured.

Guidance note: The pile head is defined to be the position along the pile in level with the seabed. Sufficient axial pile capacity can be ensured by checking that the design axial load on the pile head does not exceed the design axial resistance, obtained as the design unit skin friction, integrated over the pile surface area, plus a possible pile tip resistance.

For clay, the unit skin friction is a function of the undrained shear strength. For sand, the unit skin friction is a function of the relative density. In both cases, the unit skin friction may be determined as specified in the API RP2A and the DNV Classification Notes No. 30.4.
The effects of cyclic loading on the axial pile resistance should be considered in design. The main objective is to determine the shear strength degradation, i.e. the degradation of the unit skin friction, along the pile shaft for the appropriate prevailing loading intensities.

The effects of cyclic loading are most significant for piles in cohesive soils, in cemented calcareous soils and in fine-grained cohesionless soils (silt), whereas these effects are much less significant in medium to coarsely graded cohesionless soils.

(1) The theoretical design total lateral pile resistance, which is found by vectorial integration of the design lateral resistance over the length of the pile, shall not be less than the design lateral load applied at the pile head.

(2) The lateral displacement at the pile head shall not exceed some specified limit. The lateral displacement shall be calculated for the design lateral load and moment in conjunction with characteristic values of the soil resistance and soil stiffness.

Guidance note:
Sufficient pile capacity against combined lateral loading and moment loading in the ULS, sufficient pile capacity against this loading shall be ensured. The pile capacity is formed by lateral pile resistance. Verification of sufficient pile capacity implies that the following two requirements shall be fulfilled:

---end-of-Guidance-note---

204 For combined lateral loading and moment loading in the ULS, sufficient pile capacity against this loading shall be ensured. The pile capacity is formed by lateral pile resistance. Verification of sufficient pile capacity implies that the following two requirements shall be fulfilled:

---end-of-Guidance-note---

205 For design in the serviceability limit state, characteristic soil strength values are to be used for the soil strength. Characteristic loads are to be used for the loads. The loading shall be representative of loads that will cause permanent deformations of the soil in the long term, and which in turn will lead to permanent deformations of the pile foundation, e.g. a permanent accumulated tilt of the pile head. For this purpose, the behaviour of the soil under cyclic loading needs to be represented in such a manner that the permanent cumulative deformations in the soil are appropriately calculated as a function of the number of cycles at each load amplitude in the applied history of SLS loads.

206 For design in the serviceability limit state, it shall be ensured that deformation tolerances are not exceeded. The deformation tolerances refer to permanent deformations.

Guidance note:
Deformation tolerances are usually given in the design basis and they are often specified in terms of maximum allowable rotations of the pile head in a vertical plane. The pile head is usually defined to be at the seabed. The deformation tolerances are typically derived from visual requirements and requirements for the operation of the wind turbine. The deformation tolerances should therefore always be clarified with the wind turbine manufacturer.

Usually, an installation tolerance is specified which is a requirement to the maximum allowable rotation of the pile head at the completion of the installation of the monopile.

In addition, another tolerance is usually specified which is an upper limit for the accumulated permanent rotation of the pile head due to the history of SLS loads applied to the monopile throughout the design life. The accumulated permanent rotation subject to meeting this tolerance usually results from permanent accumulated soil deformations caused by cyclic wave and wind loads about a non-zero mean.

In some cases, an installation tolerance is specified together with a tolerance for the total rotation owing to installation and permanent accumulated deformations. This is usually expressed as a requirement to the rotation or tilt of the pile at the pile head, where the pile head is defined as the position along the pile in level with the seabed. If, for example, the tolerance for the total rotation at seabed is 0.5° and the installation tolerance at seabed is 0.25°, then the limit for the permanent accumulated rotation becomes 0.25° at seabed.

---end-of-Guidance-note---

C 300 Design criteria for jacket pile foundations

301 Jacket piles are the piles that support a jacket or frame structure such as a tripod platform. For geotechnical design of jacket piles, both the ultimate limit state and the serviceability limit state shall be considered.

302 For design in the ultimate limit state, design soil strength values are to be used for the soil strength, defined as the characteristic soil strength values divided by the specified materials factor. Design loads are to be used for the loads, each characteristic soil strength value divided by the specified material factor. The loads are to be representative of the extreme load conditions. Two cases are to be considered:

- axial loading
- combined lateral loading and moment loading

303 For axial loading, sufficient axial pile capacity in the ULS shall be ensured for each single pile. For combined lateral loading and moment loading, sufficient pile capacity against this loading in the ULS shall be ensured for each single pile.
Guidance note:
The verification of sufficient axial and lateral capacities of the individual piles can be performed by means of an integrated analysis of the entire support structure and its foundation piles, subject to the relevant design loads.

In such an analysis, the piles are discretised into a number of structural elements, interconnected by nodal points, and with soil support springs in terms of p-y and t-z curves attached at these nodal points to represent lateral and axial load-displacement relationships, respectively.

The p-y curves can be generated according to procedures given in Appendix F for cyclic loading conditions. p-y curves established according to these procedures will automatically account for cyclic degradation effects in the lateral resistances.

The t-z curves depend on the unit skin friction. For clay, the unit skin friction is a function of the undrained shear strength. For sand, the unit skin friction is a function of the relative density. In both cases, the unit skin friction may be determined as specified in Appendix F.

It is important to consider the effects of the cyclic loading on the unit skin friction. The degradation of the unit skin friction should be determined for the relevant prevailing load intensities before the t-z curves are generated.

The effects of cyclic loading are most significant for piles in cohesive soils, in cemented calcareous soils and in fine-grained cohesionless soils (silt), whereas these effects are much less significant in medium to coarsely grained cohesionless soils.

---end---of---Guidance---note---

304 Pile group effects shall be accounted for.

Guidance note:
When piles are closely spaced, the resistance of the piles as a group may be less than the sum of the individual pile capacities, both laterally and axially, and the lateral and axial resistances of the p-y and t-z curves should be adjusted accordingly.

When piles are closely spaced, the load transferred from each pile to its surrounding soils leads to displacements of the soils that support the other piles, and the behaviour of the piles as a group may be softer than if the piles were considered to have supports which were not displaced by influence from the neighbouring piles. This effect may in principle be accounted for by elastic half-space solutions for displacements in a soil volume due to applied point loads.

---end---of---Guidance---note---

305 For design in the serviceability limit state, characteristic soil strength values are to be used for the soil strength. Characteristic loads are to be used for the loads. The loading shall be representative of loads that will cause permanent deformations of the soil in the long term, and which in turn will lead to permanent deformations of the pile foundation, e.g. a permanent accumulated tilt of the support structure. For this purpose, the behaviour of the soil under cyclic loading needs to be represented in such a manner that the permanent cumulative deformations in the soil are appropriately calculated as a function of the number of cycles at each load amplitude in the applied history of SLS loads.

306 For design in the serviceability limit state, it shall be ensured that deformation tolerances are not exceeded.

Guidance note:
Deformation tolerances are usually given in the design basis and they are often specified in terms of maximum allowable rotations of the support structure and maximum allowable horizontal displacements of the pile heads.

Separate tolerances may be specified for the support structure and piles for the situation immediately after completion of the installation and for the permanent cumulative damages owing to the history of SLS loads applied to the structure and foundation throughout the design life.

---end---of---Guidance---note---

C 400 Design of piles subject to scour

401 Effects of scour shall be accounted for. Scour will lead to complete loss of lateral and axial resistance down to the depth of scour below the original seabed. Both general scour and local scour shall be considered.

Guidance note:
The p-y and t-z curves must be constructed with due consideration of the effects of scour.

In the case of general scour, which is characterised by a general erosion and removal of soil over a large area, all p-y and t-z curves are to be generated on the basis of a modified seabed level which is to be taken as the original seabed level lowered by a height equal to the depth of the general scour.

General scour reduces the effective overburden. This has an impact on the lateral and axial pile resistances in cohesionless soils. This also has an impact on the depth of transition between shallow and deep ultimate lateral resistances for piles in cohesive soils.

In the case of local scour, which is characterised by erosion and removal of soil only locally around each pile, the p-y and t-z curves should be generated with due account for the depth of the scour hole as well as for the lateral extent of the scour hole. The scour hole slope and the lateral extent of the scour hole can be estimated based on the soil type and the soil strength. Over the depth of the scour hole below the original seabed level, no soil resistance and thus no p-y or t-z curves are to be applied.

Unless data indicate otherwise, the depth of a current-induced scour hole around a pile in sand can be assumed equal to a factor 1.3 times the pile diameter. For large-diameter piles such as monopiles, this emphasises the need for scour protection unless the piles are designed with additional lengths to counteract the effects of the scour.

---end---of---Guidance---note---

D. Gravity Base Foundations

D 100 General

101 Failure modes within the categories of limit states ULS and ALS shall be considered as described in 200.

102 Failure modes within the SLS, i.e. settlements and displacements, shall be considered as described in 300 using material coefficient \(M = 1.0\).

D 200 Stability of foundations

201 The risk of shear failure below the base of the structure shall be investigated for all gravity type foundations. Such investigations shall cover failure along any potential shear surface with special consideration given to the effect of soft layers and the effect of cyclic loading. The geometry of the foundation base shall be accounted for.

Guidance note:
For gravity base structures equipped with skirts which penetrate the seabed, the theoretical foundation base shall be assumed to be at the skirt tip level. Bucket foundations, for which penetrating skirts are part of the foundation solution, and for which suction is applied to facilitate the installation, shall be considered as gravity base structures for the condition after the installation is completed.

---end---of---Guidance---note---

202 The analyses shall be carried out for fully drained, partially drained or undrained conditions, whatever represents most accurately the actual conditions.

203 For design within the applicable limit state categories ULS and ALS, the foundation stability shall be evaluated by one of the following methods:

- effective stress stability analysis
- total stress stability analysis.
An effective stress stability analysis shall be based on effective strength parameters of the soil and realistic estimates of the pore water pressures in the soil.

A total stress stability analysis shall be based on total shear strength parameters determined from tests on representative soil samples subjected to similar stress conditions as the corresponding elements in the foundation soil. Both effective stress and total stress analysis methods shall be based on laboratory shear strength with pore pressure measurements included. The test results should preferably be interpreted by means of stress paths.

Stability analyses by conventional bearing capacity formulae are only acceptable for uniform soil conditions. Guidance note:

Gravity base foundations of wind turbines usually have relatively small areas, such that bearing capacity formulae for idealised conditions will normally suffice and be acceptable for design.

For structures where skirts, dowels or similar foundation members transfer loads to the foundation soil, the contributions of these members to the bearing capacity and lateral resistance may be accounted for as relevant. The feasibility of penetrating the skirts shall be adequately documented.

Foundation stability shall be analysed in the ULS by application of the following material factors to the characteristic soil shear strength parameters:

\[
\begin{align*}
\gamma_M &= 1.15 \text{ for effective stress analysis} \\
\gamma_M &= 1.25 \text{ for total stress analysis.}
\end{align*}
\]

Effects of cyclic loading shall be included by applying load factors in accordance with A106.

In an effective stress analysis, evaluation of pore pressures shall include:

- initial pore pressure
- build-up of pore pressures due to cyclic load history
- transient pore pressures through each load cycle
- effects of dissipation.

The safety against overturning shall be investigated in the ULS and in the ALS.

For SLS design conditions, analyses of settlements and displacements are, in general, to include calculations of:

- initial consolidation and secondary settlements
- differential settlements
- permanent (long term) horizontal displacements
- dynamic motions.

Displacements of the structure, as well as of its foundation soils, shall be evaluated to provide the basis for design of conductors and other members connected to the structure which are penetrating the seabed or resting on the seabed.

Analysis of differential settlements shall account for lateral variations in soil conditions within the foundation area, non-symmetrical weight distributions and possible dominating directions of environmental loads. Differential settlements or tilt due to soil liquefaction shall be considered in seismically active areas.

The reactions from the foundation soils shall be accounted for in the design of the supported structure for all design conditions.

The distribution of soil reactions against structural members, seated on or penetrated into the sea floor, shall be estimated from conservatively assessed distributions of strength and deformation properties of the foundation soil. Possible spatial variation in soil conditions, including uneven seabed topography, shall be considered. The stiffness of the structural members shall be taken into account.

The penetration resistance of dowels and skirts shall be calculated based on a realistic range of soil strength parameters. The structure shall be provided with sufficient capacity to overcome the maximum expected penetration resistance in order to reach the required penetration depth.

As the penetration resistance may vary across the foundation site, eccentric penetration forces may be necessary to keep the platform inclination within specified limits.

Dynamic analyses of a gravity structure shall consider the effects of soil-structure interaction. For homogeneous soil conditions, modelling of the foundation soils using the continuum approach may be used. For non-homogeneous conditions, modelling by finite element techniques or other recognised methods accounting for non-homogenous conditions shall be performed.

Guidance note:

When the soil conditions are fairly homogenous and an equivalent shear modulus G can be determined, representative for the participating soil volume as well as for the prevailing strain level in the soil, then the foundation stiffnesses may be determined based on formulae from elastic theory, see Table D1 and Table D2. Foundation springs based on these formulae will be representative for the dynamic foundation stiffnesses that are needed in structural analyses for wind and wave loading on the wind turbine and its support structure. In structural analyses for earthquake loads, however, it may be necessary to apply frequency-dependent reductions of the stiffnesses from Table D1 and Table D2 to get appropriate dynamic stiffness values for the analyses.

Due account shall be taken of the strain dependency of shear modulus and internal soil damping. Uncertainties in the choice of soil properties shall be reflected in parametric studies to find the influence on response. The parametric studies should include upper and lower boundaries on shear moduli and damping ratios of the soil. Both internal soil damping and radiation damping shall be considered.

In order to assure sufficient stability of the structure or to provide a uniform vertical reaction, filling of the voids between the structure and the seabed, e.g. by underground grouting, may be necessary.

The foundation skirt system and the void-filling system shall be designed so that filling pressures do not cause channeling from one skirt compartment to another or to the seabed outside the periphery of the structure.

The filling material used shall be capable of retaining sufficient strength during the lifetime of the structure considering all relevant forms of deterioration such as:

- chemical
- mechanical
- placement problems such as incomplete mixing and dilution.
Table D1 Circular footing on stratum over bedrock or on stratum over half space

<table>
<thead>
<tr>
<th>Mode of motion</th>
<th>Foundation stiffness</th>
<th>Foundation stiffness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td>$K_v = \frac{4GR}{1-\nu}(1+1.28\frac{R}{H})$</td>
<td>$K_v = \frac{4G_1R}{1-\nu_1}(1+1.28\frac{R}{G_1})$; $1 \leq H/R \leq 5$</td>
</tr>
<tr>
<td>Horizontal</td>
<td>$K_H = \frac{8GR}{2-\nu}(1+\frac{R}{2H})$</td>
<td>$K_H = \frac{8G_1R}{2-\nu_1}(1+\frac{R}{2H})$; $1 \leq H/R \leq 4$</td>
</tr>
<tr>
<td>Rocking</td>
<td>$K_R = \frac{8GR^3}{3(1-\nu)}(1+\frac{R}{6H})$</td>
<td>$K_R = \frac{8G_1R^3}{3(1-\nu_1)}(1+\frac{R}{6H})$; $0.75 \leq H/R \leq 2$</td>
</tr>
<tr>
<td>Torsion</td>
<td>$K_T = \frac{16GR^3}{3}$</td>
<td>Not given</td>
</tr>
</tbody>
</table>

$H$, $R$, $\nu$, $G$, $G_1$, $\nu_1$, $G_2$: Parameters relevant to the calculations.
### Table D2 Circular footing embedded in stratum over bedrock

<table>
<thead>
<tr>
<th>Mode of motion</th>
<th>Foundation stiffness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical</td>
<td>$K_v = \frac{4GR}{1-\nu} \left( 1 + 1.28 \frac{R}{H} \left( 1 + \frac{D}{R} \right) \left( 1 + (0.85 - 0.28 \frac{D}{R}) \frac{D}{H} \right) \right)$</td>
</tr>
<tr>
<td>Horizontal</td>
<td>$K_h = \frac{8GR}{2-\nu} \left( 1 + \frac{R}{2H} \left( 1 + \frac{2D}{3R} \left( 1 + \frac{5D}{4H} \right) \right) \right)$</td>
</tr>
<tr>
<td>Rocking</td>
<td>$K_s = \frac{8G\rho\gamma}{3(1-\nu)} \left( 1 + \frac{R}{6H} \left( 1 + 2 \frac{D}{R} \left( 1 + 0.7 \frac{D}{H} \right) \right) \right)$</td>
</tr>
<tr>
<td>Torsion</td>
<td>$K_t = \frac{16G\rho\gamma}{3} \left( 1 + \frac{8D}{3R} \right)$</td>
</tr>
</tbody>
</table>

Range of validity:
- $D/R < 2$
- $D/H < \frac{1}{2}$
A. General

101 In this section, the requirements regarding corrosion protection arrangement and equipment are given.

102 Methods for corrosion protection include, but are not limited to, corrosion allowance, cathodic protection and coating. Biocides and scavengers can reduce corrosion in closed compartments.

103 When corrosion allowance is part of the required corrosion protection, the corrosion allowance shall be considered in all limit state analyses. Fatigue calculations can be based on a steel wall thickness equal to the nominal thickness reduced by half the allowance over the full service life.

B. Acceptable Corrosion Protection

B 100 Atmospheric zone

101 Steel structure components in the atmospheric zone shall be protected by coating.

B 200 Splash zone

201 Steel structure components in the splash zone shall be protected by coating and corrosion allowance. The splash zone is the part of a support structure which is intermittently exposed to air and immersed in the sea. The zone has special requirements to fatigue.

202 The wave height to be used to determine the upper and lower limits of the splash zone shall be taken as one-third of the 100-year wave height.

203 The upper limit of the splash zone SZU shall be calculated as

\[ SZ_U = U_1 + U_2 + U_3 \]

in which

\[ U_1 = 60\% \text{ of the wave height defined in } 202 \]
\[ U_2 = \text{highest astronomical tide (HAT)} \]
\[ U_3 = \text{foundation settlement, if applicable.} \]

SZU is measured from mean seawater level. U1, U2 and U3 shall be applied as relevant to the structure in question with a sign leading to the largest or larger value of SZU.

For floating support structures, the upper limit of the splash zone should be calculated according to DNV-OS-C101.

204 The lower limit of the splash zone SZL shall be calculated as

\[ SZ_L = L_1 + L_2 \]

in which

\[ L_1 = 40\% \text{ of the wave height defined in } 202 \]
\[ L_2 = \text{lowest astronomical tide (LAT).} \]

SZL is measured from mean seawater level. L1 and L2 shall be applied as relevant to the structure in question with a sign leading to the smallest or smaller value of SZL.

For floating support structures, the lower limit of the splash zone should be calculated according to DNV-OS-C101.

205 The corrosion protection systems shall be suitable for resisting the aggressive environment in the splash zone. Application of corrosion allowance may form the main system for corrosion protection, i.e. the wall thicknesses of structural components are increased during design to allow for corrosion in operation. The particular corrosion allowance shall be assessed in each particular case. The corrosion allowance shall be selected in accordance with the site-specific corrosion rate for steel in the submerged zone and in the splash zone and in accordance with the planned inspection and repair strategy.

Advanced corrosion protection systems can reduce the corrosion rate. A reduced corrosion rate can be utilised in design, provided inspection and repair are feasible and provided a planned strategy for inspection and repair is in place.

Guidance note:
Corrosion rates for steel in the submerged zone and in the splash zone depend on the chloride content of the seawater. The chloride content of seawater is site-specific.

In the North Sea, it can generally be assumed that the corrosion rate in the splash zone is in the range 0.3 to 0.5 mm per year. A corrosion allowance of minimum 6 mm is recommended for coated primary steel structures without planned coating repair in a 20-year design life. A corrosion allowance of minimum 2 mm is recommended for replaceable secondary structures.

It is recommended to combine a protection system based on corrosion allowance with surface protection such as glass flake reinforced epoxy coating. When such a combination is applied, the reducing effect of the surface protection on the corrosion rate shall not be taken into account. The beneficial effect of the surface protection on the fatigue life may be taken into account through selection of the relevant S-N curve.

---end-of-Guidance-note---

206 Corrosion allowance shall be taken into account by decreasing the nominal wall thickness by half the corrosion allowance over the full service life.

For North Sea conditions, a reduced corrosion allowance of 3 to 5 mm should be applied to all primary steel structures in the splash zone for fatigue analyses for a 20-year lifetime. For replaceable secondary structures in the splash zone, a reduced corrosion allowance of 2 mm can be applied.

---end-of-Guidance-note---

B 300 Submerged zone

301 Steel structure components in the submerged zone shall be cathodically protected. Use of coating is optional.

Guidance note:
Fatigue calculations can be based on a steel wall thickness equal to the nominal thickness reduced by half the corrosion allowance over the full service life.

For North Sea conditions, a reduced corrosion allowance of 3 to 5 mm should be applied to all primary steel structures in the splash zone for fatigue analyses for a 20-year lifetime. For replaceable secondary structures in the splash zone, a reduced corrosion allowance of 2 mm can be applied.

---end-of-Guidance-note---

---end-of-Guidance-note---
B 400 Closed compartments

401 Closed compartments with seawater shall be protected by cathodic protection, by coating near the water line and above the water line, and by corrosion allowance. The necessary corrosion allowance shall be established from experience data on a case to case basis.

C. Cathodic Protection

C 100 General

101 Requirements to cathodic protection are given in DNV-RP-B401.

102 The electrical potential for the cathodic protection shall be verified after the cathodic protection has been installed.

Guidance note:
The recommendations for corrosion allowance in the zone near the seabed, see B301, where the cathodic protection may not be sufficiently effective, can be disregarded when a good electrical connection is established for the cathodic protection system.

---end---of---Guidance---note---

D. Coating

D 100 General

101 Requirements to coating are given in DNV-OS-C101. For application of coating, reference is made to DNV-OS-C401.

102 Structures above the splash zone shall be protected by a high quality multilayer coating system as specified for corrosivity category C5M in ISO 12944.

103 Coating systems for structures in the splash zone and in zones below the splash zone shall be designed as for structures above the splash zone, see 102. In addition, they shall be qualified for compatibility with cathodic protection systems. Selection and qualification of coating systems shall address all conditions relevant for necessary repair after installation.

Guidance note:
Coating systems for the splash zone should meet the requirements of NORSOK M-501 and ISO 20340.

---end---of---Guidance---note---

104 Coating systems for structures in the splash zone shall be selected with due consideration of loads from impacts from service vessels and floating ice.

Guidance note:
Glass flakes can be used to reinforce epoxy-based coating systems to improve their resistance against mechanical loads.

---end---of---Guidance---note---

105 Below the splash zone coating is optional.

Guidance note:
Coating can provide a reliable corrosion protection and can be designed to reduce marine growth. However, coating can become damaged during inspection and maintenance sessions where marine growth is removed.

---end---of---Guidance---note---
SECTION 12  
TRANSPORT AND INSTALLATION

A. Marine Operations

A 100  Warranty surveys

101  Warranty surveys are required for insurance of the sea transport project phase and the installation project phase.

102  Warranty surveys are to be carried out in accordance with an internationally recognised scheme. The DNV ‘Rules for Planning and Execution of Marine Operations’ is accepted by the insurance, finance and marine industries. Marine operations cover yard lift, load out, sea transportation, offshore lift and installation operations.

103  DNV ‘Rules for Planning and Execution of Marine Operations’, Part 1, Chapter 1, describes in detail the principles, the scope and the procedures for insurance warranty surveys.

A 200  Planning of operations

201  The planning of the operations should cover planning principles, documentation and risk evaluation. The planning and design sequence is given in Figure 1.

![Figure 1: Planning and design sequence](image)

Guidance note:
Note that all elements of the marine operation shall be documented. This also includes onshore facilities such as quays, soil, pullers and foundations.

205  Properties for object, equipment, structures, vessels etc. may be documented with recognised certificates. The basis for the certification shall then be clearly stated, i.e. acceptance standard, basic assumptions, dynamics considered etc., and shall comply with the philosophy and intentions of DNV ‘Rules for Planning and Execution of Marine Operations’.

206  Design analysis should typically consist of various levels with a “global” analysis at top level, and with strength calculations for details as a lowest level. Different types of analysis methods and tools may apply for different levels.

207  Operational aspects shall be documented in the form of procedure, operation manuals, certificates, calculations etc. Relevant qualifications of key personnel shall be documented.

208  All relevant documentation shall be available on site during execution of the operation.

209  The documentation shall demonstrate that philosophies, principles and requirements of DNV ‘Rules for Planning and Execution of Marine Operations’ are complied with.

210  Documentation for marine operations shall be self contained or clearly refer to other relevant documents.

211  The quality and details of the documentation shall be such that it allows for independent reviews of plans, procedures and calculations for all parts of the operation.

Guidance note:
A document plan describing the document hierarchy and scope for each document is recommended for major marine operations.

212  Applicable input documentation such as:

— statutory requirements
— rules
— company specifications
— standards and codes
— concept descriptions
— basic engineering results (drawings, calculations etc.)
— relevant contracts or parts of contracts.

should be identified before any design work is performed.

213  Necessary documentation shall be prepared to prove acceptable quality of the intended marine operation. Typically, output documentation consists of:

— planning documents including design briefs and design basis, schedules, concept evaluations, general arrangement drawings and specifications
— design documentation including load analysis, global strength analysis, local design strength calculations, stability and ballast calculations and structural drawings
— operational procedure including testing program and procedure, operational plans and procedure, arrangement drawings, safety requirement and administrative procedures
— certificates, test reports, survey reports, NDE documentation, as built reports, etc.

214  Execution of marine operations shall be logged. Samples of planned recording forms shall be included in the marine
operations manual.

215 Further requirements are given in DNV ‘Rules for Planning and Execution of Marine Operations’, Part 1, Chapter 2.

A 300 Design loads

301 The design loads include basic environmental conditions like wind, wave, current and tide. The design process involving characteristic conditions, characteristic loads and design loads is illustrated in Figure 2.

Figure 2
Design process

302 The load analysis should take into account dynamic effects and non-linear effects. Permanent loads, live loads, deformation loads, environmental loads as well as accidental loads should be considered.

303 Further requirements are given in DNV ‘Rules for Planning and Execution of Marine Operations’, Part 1, Chapter 3.

A 400 Structural design

401 Prerequisites for structures involved in marine operations shall include design principles, strength criteria for limit state design, testing, material selection and fabrication.

402 Requirements and guidelines are given in DNV ‘Rules for Planning and Execution of Marine Operations’, Part 1, Chapter 4.

A 500 Load transfer operations

501 The load transfer operations cover load-out, float-out, lift-off and mating operations.

502 Requirements to load transfer operations are given in DNV ‘Rules for Planning and Execution of Marine Operations’, Part 2, Chapter 1.

A 600 Towing

601 Specific requirements and guidelines for single-vessel and barge-towing operations are given in DNV ‘Rules for Planning and Execution of Marine Operations’, Part 2, Chapter 2.

A 700 Offshore installation

701 Specific requirements and recommendations for offshore installation operations particularly applicable for fixed offshore structures like piled or gravity based wind turbine support structures are given in DNV ‘Rules for Planning and Execution of Marine Operations’, Part 2, Chapter 4. Environmental loads and load cases to be considered are described as well as on-bottom stability requirements and requirements to structural strength.

702 Operational aspects for ballasting, pile installation and grouting shall be considered.

A 800 Lifting

801 Guidance and recommendations for well controlled lifting operations, onshore, inshore and offshore, of objects with weight exceeding 50 tonnes are given in DNV ‘Rules for Planning and Execution of Marine Operations’, Part 2, Chapter 5. The chapter describes in detail the basic loads, dynamic loads, skew loads and load cases to be considered. Design of slings, grommets and shackles as well as design of the lifted object itself are covered.

802 In addition, operational aspects such as clearances, monitoring of lift and cutting of sea fastening are described.

A 900 Subsea operations

901 Subsea operations are relevant for tie-in of, for example, electrical cables. Planning, design and operational aspects for such installations are described in DNV ‘Rules for Planning and Execution of Marine Operations’, Part 2, Chapter 6.
SECTION 13
IN-SERVICE INSPECTION, MAINTENANCE AND MONITORING

A. General

A 100 General

101 An offshore wind farm is typically planned for a 20-year design lifetime. In order to sustain the harsh offshore environment, adequate inspections and maintenance have to be carried out. This applies to the entire wind farm including substation and power cables.

102 This section provides the requirements to the maintenance and inspection system for the wind turbines, the support structures, the substation and the power cables.

B. Periodical Inspections

B 100 General

101 The following periodical inspections shall be performed in order to evaluate the condition of the offshore wind farm during its design lifetime:

- periodical inspection of wind turbines
- periodical inspection of structural and electrical systems above water
- periodical inspection of structures below water
- periodical inspection of sea cable.

The periodical inspection consists of three levels of inspection, viz. general visual inspection, close visual inspection and non-destructive examination. General visual inspections can be carried out using an ROV (Remote Operated Vehicle), whereas close visual inspections require inspections carried out by a diver.

B 200 Preparation for periodical inspections

201 A Long Term Inspection Program for the wind farm shall be prepared, in which all disciplines and systems are specified. In this program, inspection coverage over a five-year period should be specified in order to ensure that all essential components, systems and installations in the offshore wind farm will be covered by annual inspections over the five-year period.

202 The periodical inspections should be carried out with a scope of work necessary to provide evidence as to whether the inspected installation or parts thereof continue to comply with the design assumptions as specified in the Certificate of Compliance.

203 The scope of work for an inspection shall always contain a sufficient number of elements and also highlight any findings or deviations reported during previous inspections which have not been reported or dealt with.

Guidance note:

The inspection will typically consist of an onshore part and an offshore part.

The onshore part typically includes:

- follow up on outstanding points from the previous inspection
- revision of inspection procedures
- revision of maintenance documentation
- interview with discipline engineers, including presentation/clarification of any comments deduced during review of procedures
- review of maintenance history
- preparation of the offshore program, based on findings from the onshore part and systems selected from the Long Term Inspection Program.

The offshore inspection typically includes test and inspections on site as well as an assessment of the findings in order to distinguish between random failures and systematic failures.

---end of Guidance note---

B 300 Interval between inspections

301 The interval between inspections of critical items should not exceed one year. For less critical items longer intervals are acceptable. The entire wind farm should be inspected at least once during a five-year period. Inspection intervals for subsequent inspections should be modified based on findings. Critical items are assumed to be specified for the specific project in question.

B 400 Inspection results

401 The results of the periodical inspections shall be assessed and remedial actions taken, if necessary. Inspection results and possible remedial actions shall be documented.

B 500 Reporting

501 The inspection shall be reported. The inspection report shall give reference to the basis for the inspection such as national regulations, rules and inspection programs, instructions to surveyors and procedures. It shall be objective, have sufficient content to justify its conclusions and should include good quality sketches and/or photographs as considered appropriate.

C. Periodical Inspection of Wind Turbines

C 100 Interval between inspections

101 The interval between inspections above water should not exceed one year. In addition the requirements in the wind turbine service manual shall be followed.

C 200 Scope for inspection

201 The following items shall be covered by the inspection:

- blades
- gear boxes
- electrical systems
- transformers and generators
- lifting appliances
- fatigue cracks
- dents and deformation(s)
- bolt pre-tension
- status on outstanding issues from previous periodical inspections of wind turbines.

202 Inspections as required in the wind turbine service manual come in addition to the inspection implied by 201.

D. Periodical Inspection of Structural and Electrical Systems above Water

D 100 Interval between inspections

101 The interval between inspections above water should not exceed one year. In addition the requirements in the wind turbine service manual shall be followed.

---end---of---Guidance---note---
D 200 Scope for inspection

201 The following items shall be covered by the inspection:
- electrical systems
- transformers and generators
- tower structures
- lifting appliances
- access platforms
- upper part of J-tubes
- upper part of ladders
- upper part of fenders
- heli-hoist platforms
- corrosion protection systems
- marine growth
- fatigue cracks
- dents
- deformation(s)
- bolt pre-tension
- status on outstanding issues from previous periodical inspections above water.

202 Inspection for fatigue cracks at least every year as required by the list in 101 may be waived depending on which design philosophy has been used for the structural detail in question: When the fatigue design of the structural detail has been carried out by use of safety factors corresponding to an assumption of no access for inspection according to Sec.7 Table J2, then there is no need to inspect for fatigue cracks and inspection for fatigue cracks may be waived. When smaller safety factors have been used for the fatigue design, inspections need to be carried out. The inspection interval depends on the structural detail in question and the inspection method and may be determined based on the magnitude of the safety factor applied in design. In general, the smaller the safety factor, the shorter is the interval between consecutive inspections.

Guidance note:
Provided a reliable inspection, such as an inspection by eddy current or a magnetic particle inspection, is carried out after a good cleaning of the hot spot area, the interval between consecutive inspections can be calculated from the safety level expressed in terms of the material factor \( \gamma_m \) as follows:

\[
\text{Inspection interval} = \text{Calculated fatigue life} \times \gamma_m^{5/1.25}.
\]
This implies the following requirements to inspection:

\( \gamma_m = 1.25 \) No check for fatigue cracks is needed, corresponding to an assumption of no access to the structural detail.
\( \gamma_m = 1.15 \) Checks for fatigue cracks needed every 13 years if the calculated fatigue life is 20 years. This will result in the same safety level as that achieved for \( \gamma_m = 1.25 \) without inspections.
\( \gamma_m = 1.0 \) Checks for fatigue cracks needed every 7 years if the calculated fatigue life is 20 years. This will result in the same safety level as that achieved for \( \gamma_m = 1.25 \) without inspections.

---end---of---Guidance---Note---

203 Inspections as required in the wind turbine service manual come in addition to the inspection implied by 201.

E. Periodical Inspection of Structures Below Water

E 100 Interval between inspections

101 The interval between inspections below water should not exceed five years.

Guidance note:
Five-year inspection intervals are common; however, more frequent inspections during the first few years after installation are recommended.

---end---of---Guidance---Note---

E 200 Scope for inspection

201 The following items shall be covered by the inspection:
- support structures
- lower part of J-tubes
- lower part of ladders
- lower part of fenders
- corrosion protection systems (anodes, coating etc.)
- marine growth
- fatigue cracks
- scour and scour protection
- damages and dents
- deformations
- debris
- status on outstanding issues from previous periodical inspections below water.

Visual inspections may be carried out by a remotely operated vehicle (ROV).

202 Inspection for fatigue cracks at least every five years as required by the list in 101 may be waived depending on which design philosophy has been used for the structural detail in question: When the fatigue design of the structural detail has been carried out by use of safety factors corresponding to an assumption of no access for inspection according to Sec.7 Table J2, then there is no need to inspect for fatigue cracks and inspection for fatigue cracks may be waived. When smaller safety factors have been used for the fatigue design, inspections need to be carried out. The inspection interval depends on the structural detail in question and the inspection method and may be determined based on the magnitude of the safety factor applied in design. In general, the smaller the safety factor, the shorter is the interval between consecutive inspections.

Guidance note:
Provided a reliable inspection, such as an inspection by eddy current or a magnetic particle inspection, is carried out after a good cleaning of the hot spot area, the interval between consecutive inspections can be calculated from the safety level expressed in terms of the material factor \( \gamma_m \) as follows:

\[
\text{Inspection interval} = \text{Calculated fatigue life} \times \gamma_m^{5/1.25}.
\]
This implies the following requirements to inspection:

\( \gamma_m = 1.25 \) No check for fatigue cracks is needed, corresponding to an assumption of no access to the structural detail.
\( \gamma_m = 1.15 \) Checks for fatigue cracks needed every 13 years if the calculated fatigue life is 20 years. This will result in the same safety level as that achieved for \( \gamma_m = 1.25 \) without inspections.
\( \gamma_m = 1.0 \) Checks for fatigue cracks needed every 7 years if the calculated fatigue life is 20 years. This will result in the same safety level as that achieved for \( \gamma_m = 1.25 \) without inspections.

---end---of---Guidance---Note---

203 The anode potential shall be measured and fulfill minimum requirements.

204 If deemed critical, steel wall thickness shall be measured.
F. Periodical Inspection of Sea Cables

F 100 Interval between inspections

101 The interval between inspections of sea cables should not exceed five years.

F 200 Scope for inspection

201 Interconnecting power cables between the wind turbines and the transformer station as well as power cables to the shore shall be inspected, unless they are buried.

202 To the extent that power cables are to be buried, it shall be ensured that the cables are buried to design depth.

G. Deviations

G 100 General

101 Deviations or non-conformances are findings made during an inspection that require special follow-up. Deviations may be assigned one of three different levels of concern according to their criticality:

1) Those impairing the overall safety, integrity and fitness of the installation or parts thereof and/or the persons onboard.

2) Those which are found to present a hazard for the persons onboard due to deterioration and/or damage, and those where documents are missing for completing a matter.

3) Those which are found starting to deteriorate or those which are found to have minor defects.

The deviations shall be handled and reported accordingly.
APPENDIX A
STRESS CONCENTRATION FACTORS FOR TUBULAR JOINTS

A. Calculation of Stress Concentration Factors

A 100  General

101 Calculation of stress concentration factors (SCFs) for simple planar tubular joints can be carried out by application of available closed form solutions. The Efthymiou equations should be applied for T, Y, DT, and X joints, as well as for K and KT joints. These parametric equations are expressed in terms of a number of geometric parameters whose definitions are given in Figure 1. The ranges of these parameters for which the parametric equations are valid are given in item 103.

Figure 1
Non-dimensional tubular joint parameters

102 The parametric equations for calculation of SCFs for tubular joints are given on the following pages.

103 In 1985, Efthymiou and Durkin published a series of parametric equations covering T/Y and gap/overlap K joints. Over 150 configurations were analysed with the PMBSHELL finite element program using 3D thick shell elements for the tubular members and 3D brick elements for the welds with profiles as per AWS (1994). The hot-spot SCFs were based on maximum principal stresses linearly extrapolated to the modelled weld toe, in accordance with the HSE recommendations, with some consideration being given to boundary conditions (i.e. short cords and cord end fixity). In 1988, Efthymiou published a comprehensive set of parametric equations covering T/Y, X, K and KT simple joint configurations. These equations were designed using influence functions to describe K, KT and multiplanar joints in terms of simple T braces with carry-over effects from the additional loaded braces.

With respect to the Efthymiou equations reproduced below, the following points should be noted:

— The Efthymiou equations give a comprehensive coverage of all parametric variations and were developed as mean fit equations. They tend to give less conservative SCFs than the other SCF equations, with the exception of the Lloyd’s Register mean equations.

— It has been shown by Efthymiou that the saddle SCF is reduced in joints with short chord lengths, due to the restriction in chord ovalisation caused by either the presence of chord end diaphragms or by the rigidity of the chord end fixing onto the test rig. Therefore, the measured saddle SCFs on joints with short chords may be less than for the equivalent joint with a more realistic chord length, a factor considered first in the Efthymiou equations and later adopted in the Lloyd’s Register SCF equations.

— The equations introduce SCF modifiers to account for the influence of chord end fixity on beam bending (C) and for the reduction in chord wall deformations when the chord ends are close to the intersection (α < 12) and are restrained (F).

— For wide gap K joints under balanced axial load, a Y classification is appropriate with chord length parameter α set at 12 to account for the limited beam bending.

The validity range for the Efthymiou equations are as follows:

\[
\begin{align*}
0.2 & \leq \beta \leq 1.0 \\
0.2 & \leq \tau \leq 1.0 \\
8 & \leq \gamma \leq 32 \\
4 & \leq \alpha \leq 40 \\
20^\circ & \leq \theta \leq 90^\circ \\
\frac{0.6\beta}{\sin \theta} & \leq \zeta \leq 1.0
\end{align*}
\]
### Table A1 Stress Concentration Factors for Simple Tubular T/Y Joints

<table>
<thead>
<tr>
<th>Load type and fixity conditions</th>
<th>SCF equations</th>
<th>Eqn. No.</th>
<th>Short chord correction</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Axial load-Chord ends fixed</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chord saddle:</td>
<td>( \gamma \tau \left( 1.11 - 3(\beta - 0.52)^2 \right) \left( \sin \theta \right)^6 )</td>
<td>(1)</td>
<td>F1</td>
</tr>
<tr>
<td>Chord crown:</td>
<td>( \gamma^{0.2} \tau \left( 2.65 + 5(\beta - 0.65)^2 \right) + \tau \beta \left( 0.25 \alpha - 3 \right) \sin \theta )</td>
<td>(2)</td>
<td>None</td>
</tr>
<tr>
<td>Brace saddle:</td>
<td>( 1.3 + \gamma \tau^{0.52} \alpha^{0.1} \left( 0.187 - 1.25\beta^{1.1}(\beta - 0.96) \right) \left( \sin \theta \right)^{2.7-0.01\alpha} )</td>
<td>(3)</td>
<td>F1</td>
</tr>
<tr>
<td>Brace crown:</td>
<td>( 3 + \gamma^{1.2} \left( 0.12 \exp \left( -4\beta \right) + 0.011\beta^2 - 0.045 \right) + \beta \tau \left( 0.1 \alpha - 1.2 \right) )</td>
<td>(4)</td>
<td>None</td>
</tr>
<tr>
<td><strong>Axial load-General fixity conditions</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chord saddle:</td>
<td>(Eqn.(1)) + ( C_1 \left( 0.8 \alpha - 6 \right) \tau \beta \left( 1 - \beta^2 \right)^{0.5} \left( \sin 2\theta \right)^2 )</td>
<td>(5)</td>
<td>F2</td>
</tr>
<tr>
<td>Chord crown:</td>
<td>( \gamma^{0.2} \tau \left( 2.65 + 5(\beta - 0.65)^2 \right) + \tau \beta \left( C_2 \alpha - 3 \right) \sin \theta )</td>
<td>(6)</td>
<td>None</td>
</tr>
<tr>
<td>Brace saddle:</td>
<td>(Eqn.(3))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brace crown:</td>
<td>( 3 + \gamma^{1.2} \left( 0.12 \exp \left( -4\beta \right) + 0.011\beta^2 - 0.045 \right) + \beta \tau \left( C_3 \alpha - 1.2 \right) )</td>
<td>(7)</td>
<td>None</td>
</tr>
<tr>
<td><strong>In-plane bending</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chord crown:</td>
<td>( 1.45 \beta \tau^{0.85} \left( 1 - 0.68\beta \right) \left( \sin \theta \right)^{0.7} )</td>
<td>(8)</td>
<td>None</td>
</tr>
<tr>
<td>Brace crown:</td>
<td>( 1 + 0.65 \beta \tau^{0.4} \gamma^{0.09 - 0.77\beta} \left( \sin \theta \right)^{0.06\gamma - 1.16} )</td>
<td>(9)</td>
<td>None</td>
</tr>
<tr>
<td><strong>Out-of-plane bending</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chord saddle:</td>
<td>( \gamma \tau \left( 1.7 - 1.05\beta^3 \right) \left( \sin \theta \right)^{3.6} )</td>
<td>(10)</td>
<td>F3</td>
</tr>
<tr>
<td>Brace saddle:</td>
<td>( \tau^{-0.54} \gamma^{-0.05} \left( 0.99 - 0.47 \beta + 0.08 \beta^4 \right) )</td>
<td>(11)</td>
<td>F3</td>
</tr>
</tbody>
</table>

**Short chord correction factors** (\( \alpha < 12 \))

\[
F_1 = 1 - \left( 0.83 \beta - 0.56 \beta^2 - 0.02 \right) \gamma^{0.23} \exp \left( -0.21 \gamma^{-1.16} \alpha^{2.5} \right)
\]

\[
F_2 = 1 - \left( 1.43 \beta - 0.97 \beta^2 - 0.03 \right) \gamma^{0.04} \exp \left( -0.71 \gamma^{-1.38} \alpha^{2.5} \right)
\]

\[
F_3 = 1 - 0.55 \beta^{1.8} \gamma^{0.16} \exp \left( -0.49 \gamma^{-0.89} \alpha^{1.8} \right)
\]

**Chord-end fixity parameter**

\[
C_1 = 2(0.5) \\
C_2 = C/2 \\
C_3 = C/5 \\
C = \text{chord end fixity parameter} \\
0.5 \leq C \leq 1.0, \text{ Typically } C = 0.7
\]

**Formulas**

\[
\exp(x) = e^x
\]
**Table A2 Stress Concentration Factors for Simple X Tubular Joints**

<table>
<thead>
<tr>
<th>Load type and fixity conditions</th>
<th>SCF equation</th>
<th>Eqn. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Axial load (balanced)</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chord saddle:</td>
<td>$3.87 \gamma \tau \beta \left(1.10 - \beta^{1.8}\right) \left(\sin \theta\right)^{1.7}$</td>
<td>(12)</td>
</tr>
<tr>
<td>Chord crown:</td>
<td>$\gamma^{0.2} \tau \left(2.65 + 5\left(\beta - 0.65\right)^{2}\right) - 3 \tau \beta \sin \theta$</td>
<td>(13)</td>
</tr>
<tr>
<td>Brace saddle:</td>
<td>$1 + 1.9 \gamma \tau^{0.5} \beta^{0.9} \left(1.09 - \beta^{1.7}\right) \left(\sin \theta\right)^{2.5}$</td>
<td>(14)</td>
</tr>
<tr>
<td>Brace crown:</td>
<td>$3 + \gamma^{1.2} \left(0.12 \exp \left(-4\beta\right) + 0.011 \beta^{2} - 0.045\right)$</td>
<td>(15)</td>
</tr>
<tr>
<td>In joints with short cords ($\alpha &lt; 12$) the saddle SCF can be reduced by the factor $F1$ (fixed chord ends) or $F2$ (pinned chord ends) where</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F1 = 1 - \left(0.83 \beta - 0.56 \beta^{2} - 0.02\right) \gamma^{0.23} \exp \left(-0.21 \gamma^{-1.16} \alpha^{2.5}\right)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F2 = 1 - \left(1.43 \beta - 0.97 \beta^{2} - 0.03\right) \gamma^{0.04} \exp \left(-0.71 \gamma^{-1.38} \alpha^{2.5}\right)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>In plane bending</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chord crown:</td>
<td>(Eqn.(8))</td>
<td></td>
</tr>
<tr>
<td>Brace crown:</td>
<td>(Eqn. (9))</td>
<td></td>
</tr>
<tr>
<td><strong>Out of plane bending</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chord saddle:</td>
<td>$\gamma \tau \beta \left(1.56 - 1.34 \beta^{4}\right) \left(\sin \theta\right)^{1.6}$</td>
<td>(16)</td>
</tr>
<tr>
<td>Brace saddle:</td>
<td>$\tau^{0.54} \gamma^{-0.05} \left(0.99 - 0.47 \beta + 0.08 \beta^{4}\right)$. (Eqn.(16))</td>
<td>(17)</td>
</tr>
<tr>
<td>In joints with short chords ($\alpha &lt; 12$) eqns. (16) and (17) can be reduced by the factor $F3$ where:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F3 = 1 - 0.55 \beta^{1.8} \gamma^{-0.16} \exp \left(-0.49 \gamma^{-0.89} \alpha^{1.8}\right)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table A3 Stress Concentration Factors for Simple Tubular K Joints and Overlap K Joints

<table>
<thead>
<tr>
<th>Load type and fixity conditions</th>
<th>SCF equation</th>
<th>Eqn. no.</th>
<th>Short chord correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balanced axial load</td>
<td>Chord:</td>
<td>(20)</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>( \tau^{0.9} \gamma^{0.5} \left( 0.67 - \beta^2 + 1.16 \beta \right) \sin^0 \left( \frac{\sin \theta_{\text{max}}}{\sin \theta_{\text{min}}} \right)^{0.30} ) Chord: ( \left( \frac{\beta_{\text{max}}}{\beta_{\text{min}}} \right)^{0.30} \left( 1.64 + 0.29 \beta^{-0.38} \text{ATAN} \left( 8 \zeta \right) \right) ) Brace: ( 1 + \left( 1.97 - 1.57 \beta^{0.25} \right) \tau^{-0.14} (\sin 0)^{0.7} ). (Eqn. (20))+ ( \sin^{1.8} \left( \theta_{\text{max}} + \theta_{\text{min}} \right) (0.131 - 0.084 \text{ATAN} \left( 14 \zeta + 4.2 \beta \right) ). C( \beta^{1.5} \gamma^{0.5} \tau^{-1.22} ) Where: C = 0 for gap joints C = 1 for the through brace C = 0.5 for the overlapping brace Note that ( \tau, \beta, \theta ) and the nominal stress relate to the brace under consideration ATAN is arctangent evaluated in radians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unbalanced in plane bending</td>
<td>Chord crown: (Eqn. (8)) (for overlaps exceeding 30% of contact length use 1.2: (Eqn. (8))) Gap joint brace crown: (Eqn. (9)) Overlap joint brace crown: (Eqn. (9)) ( (0.9+0.4\beta) ) (22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unbalanced out-of-plane bending</td>
<td>Chord saddle SCF adjacent to brace A: (Eqn. (10))(_A) ( \left( 1 - 0.08 (\beta_B \gamma)^{0.7} \exp \left( -0.8 x \right) \right) ) (Eqn. (10))(<em>B) ( \left( 1 - 0.08 (\beta_A \gamma)^{0.5} \exp \left( -0.8 x \right) \right) \left( 2.05 \beta</em>{\text{max}}^{0.5} \exp \left( -1.3 x \right) \right) ) where ( x = 1 + \frac{\zeta \sin \theta_A}{\beta_A} ) Brace A saddle SCF ( \tau^{-0.54} \gamma^{-0.05} \left( 0.99 - 0.47 \beta + 0.08 \beta^4 \right) ). (Eqn. (23)) (23) F4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\( F_4 = 1 - 1.07 \beta^{1.88} \exp \left( -0.16 \gamma^{-1.06} a^{-2.4} \right) \) (Eqn. (10))\(_A\) is the chord SCF adjacent to brace A as estimated from eqn.(10). Note that the designation of braces A and B is not geometry dependent. It is nominated by the user.
### Table A4 Stress Concentration Factors for Simple Tubular K Joints and Overlap K Joints

<table>
<thead>
<tr>
<th>Load type and fixity conditions</th>
<th>SCF equations</th>
<th>Eqn. No.</th>
<th>Short chord correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial load on one brace only</td>
<td>Chord saddle: (Eqn. (5))</td>
<td></td>
<td>F1</td>
</tr>
<tr>
<td></td>
<td>Chord crown: (Eqn. (6))</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Brace saddle: (Eqn. (3))</td>
<td></td>
<td>F1</td>
</tr>
<tr>
<td></td>
<td>Brace crown: (Eqn. (7))</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Note that all geometric parameters and the resulting SCF’s relate to the loaded brace.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-plane-bending on one brace only</td>
<td>Chord crown: (Eqn. (8))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brace crown: (Eqn. (9))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note that all geometric parameters and the resulting SCF’s relate to the loaded brace.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Out-of-plane bending on one brace only</td>
<td>Chord saddle: (Eqn. (10)) $\xi \left(1 - 0.08 A_B \gamma \right)^{0.5} \exp(-0.8 x)$</td>
<td>(25)</td>
<td>F3</td>
</tr>
<tr>
<td></td>
<td>Brace saddle: $x = 1 + \frac{\zeta \sin \theta_A}{B_A}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brace saddle: $x^{-0.47} \gamma^{-0.05} \left(0.99 - 0.47 \beta + 0.08 \beta^4 \right)$ (Eqn. (25))</td>
<td>(26)</td>
<td>F3</td>
</tr>
</tbody>
</table>

### Short chord correction factors:

- $F1 = 1 - (0.83 \beta - 0.56 \beta^2 - 0.02 \gamma^{0.23} \exp(-0.21 \gamma^{-1.16} A^{2.5})$)
- $F3 = 1 - 0.55 \beta^{1.8} \gamma^{0.16} \exp(-0.49 \gamma^{-0.89} A^{1.8})$
### Table A5 Stress Concentration Factors for Simple KT Tubular Joints and Overlap KT Joints

<table>
<thead>
<tr>
<th>Load type</th>
<th>SCF equation</th>
<th>Eqn. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balanced axial load</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Chord:</strong></td>
<td>(Eqn. (20))</td>
<td></td>
</tr>
<tr>
<td><strong>Brace:</strong></td>
<td>(Eqn. (21))</td>
<td></td>
</tr>
<tr>
<td>For the diagonal braces A &amp; C use $\zeta = \zeta_{AB} + \zeta_{BC} + \beta_B$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For the central brace, B, use $\zeta = \text{maximum of } \zeta_{AB}, \zeta_{BC}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-plane bending</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chord crown:</td>
<td>(Eqn. (8))</td>
<td></td>
</tr>
<tr>
<td>Brace crown:</td>
<td>(Eqn. (9))</td>
<td></td>
</tr>
<tr>
<td>Unbalanced out-of-plane bending</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Chord saddle SCF adjacent to diagonal brace A:** | (Eqn. (10))$A$

\[
\left(1 - 0.08(\beta_B \gamma)^{0.5} \exp(-0.8 \times x_{AB})\right) \left(1 - 0.08(\beta_C \gamma)^{0.5} \exp(-0.8 \times x_{AC})\right) +
\]

\[
\left(1 - 0.08(\beta_B \gamma)^{0.5} \exp(-0.8 \times x_{AB})\right)^2 +
\]

\[
\left(1 - 0.08(\beta_C \gamma)^{0.5} \exp(-0.8 \times x_{BC})\right)^2 |

\[
\left(1 - 0.08(\beta_B \gamma)^{0.5} \exp(-0.8 \times x_{AB})\right) \left(2.05 \beta_{max} \exp(-1.3 \times x_{AB})\right) +
\]

\[
\left(1 - 0.08(\beta_C \gamma)^{0.5} \exp(-0.8 \times x_{BC})\right) \left(2.05 \beta_{max} \exp(-1.3 \times x_{BC})\right)
\]

where

\[
x_{AB} = 1 + \frac{\zeta_{AB} \sin \theta_A}{\beta_A}
\]

\[
x_{AC} = 1 + \frac{(\zeta_{AB} + \zeta_{BC} + \beta_B) \sin \theta_A}{\beta_A}
\]

Chord saddle SCF adjacent to central brace B:

| (Eqn. (10))$B$

\[
\left(1 - 0.08(\beta_B \gamma)^{0.5} \exp(-0.8 \times x_{AB})\right)^2 +
\]

\[
\left(1 - 0.08(\beta_B \gamma)^{0.5} \exp(-0.8 \times x_{AB})\right)^2 |

\[
\left(1 - 0.08(\beta_B \gamma)^{0.5} \exp(-0.8 \times x_{AB})\right) \left(2.05 \beta_{max} \exp(-1.3 \times x_{AB})\right) +
\]

\[
\left(1 - 0.08(\beta_B \gamma)^{0.5} \exp(-0.8 \times x_{BC})\right) \left(2.05 \beta_{max} \exp(-1.3 \times x_{BC})\right)
\]

where

\[
x_{AB} = 1 + \frac{\zeta_{AB} \sin \theta_B}{\beta_B}
\]

\[
x_{BC} = 1 + \frac{\zeta_{BC} \sin \theta_B}{\beta_B}
\]

\[
P_1 = \left(\frac{\beta_A}{\beta_B}\right)^2
\]

\[
P_2 = \left(\frac{\beta_C}{\beta_B}\right)^2
\]

Out-of-plane bending brace SCFs

Out-of-plane bending brace SCFs are obtained directly from the adjacent chord SCFs using:

\[
t^{-0.54} \gamma^{-0.05} \left(0.99 - 0.47 \beta + 0.08 \beta^4\right) \text{SCF}_{\text{chord}}
\]

where SCF\(_{\text{chord}}\) = (Eqn. (27)) or (Eqn. (28))
Axial load on one brace only

- Chord saddle: (Eqn. (5))
- Chord crown: (Eqn. (6))
- Brace saddle: (Eqn. (3))
- Brace crown: (Eqn. (7))

Out-of-plane bending on one brace only

Chord SCF adjacent to diagonal brace A:

$$x_{AB} = 1 + \frac{\zeta_{AB} \sin \theta_A}{\beta_A}$$

$$x_{AC} = 1 + \left( \frac{\zeta_{AB} + \zeta_{BC} + \beta_B}{\beta_A} \right) \sin \theta_A$$

Chord SCF adjacent to central brace B:

$$x_{AB} = 1 + \frac{\zeta_{AB} \sin \theta_B}{\beta_A}$$

$$x_{BC} = 1 + \frac{\zeta_{BC} \sin \theta_B}{\beta_B}$$

$$P_1 = \left( \frac{\beta_A}{\beta_B} \right)^2$$

$$P_2 = \left( \frac{\beta_C}{\beta_B} \right)^2$$

Out-of-plane brace SCFs

Out-of-plane brace SCFs are obtained directly from the adjacent chord SCFs using:

$$x_{chord}^{0.54} y^{0.05} \left( 0.99 - 0.47 \beta + 0.08 \beta^4 \right) SCF_{chord}$$

<table>
<thead>
<tr>
<th>Load type</th>
<th>SCF equation</th>
<th>Eqn. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial load on one brace only</td>
<td>Chord saddle: (Eqn. (5))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chord crown: (Eqn. (6))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brace saddle: (Eqn. (3))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brace crown: (Eqn. (7))</td>
<td></td>
</tr>
<tr>
<td>Out-of-plane bending on one brace only</td>
<td>Chord SCF adjacent to diagonal brace A: (Eqn. (10))</td>
<td>(30)</td>
</tr>
<tr>
<td></td>
<td>Chord SCF adjacent to central brace B: (Eqn. (10))</td>
<td>(31)</td>
</tr>
<tr>
<td></td>
<td>Out-of-plane brace SCFs are obtained directly from the adjacent chord SCFs using:</td>
<td>(32)</td>
</tr>
</tbody>
</table>
APPENDIX B
LOCAL JOINT FLEXIBILITIES FOR TUBULAR JOINTS

A. Calculation of Local Joint Flexibilities

A 100 General

101 Calculation of local joint flexibilities (LJFs) for simple planar tubular joints can be carried out by application of available closed form solutions. Buitrago’s parametric expressions for LJFs should be used. These expressions give local joint flexibilities of brace ends for axial loading, for in-plane bending and for out-of-plane bending. There are expressions for single-brace joints (Y joints), for cross joints (X joints), and for gapped K joints and overlapped K joints. The expressions are given in terms of a number of geometric parameters whose definitions are given in Figure 1. LJFs influence the global static and dynamic structural response.

102 In addition to direct flexibility terms between loading and deformation of a particular brace end, there are cross terms between loading of one brace end and deformation of another brace end in joints where more than one brace join in with the chord beam. Figure 1 provides information of degrees of freedom for which cross terms of local joint flexibility exist between different brace ends.

Figure 1
General joint geometry, loads, and degrees of freedom

103 The local joint flexibility LJF for a considered degree of freedom of a brace end is defined as the net local deformation of the brace-chord intersection (“footprint”) in the brace local coordinates due to a unit load applied to the brace end.

104 The local joint flexibilities are expressed in terms of non-dimensional local joint flexibilities, \( f \), which are also known as non-dimensional influence factors, as follows

\[
LJF_{\text{axial}} = \frac{f_{\text{axial}}}{ED} \\
LJF_{\text{IPB}} = \frac{f_{\text{IPB}}}{ED} \\
LJF_{\text{OPB}} = \frac{f_{\text{OPB}}}{ED}
\]

in which \( E \) denotes Young’s modulus of elasticity, \( D \) is the outer chord diameter, \( \text{IPB} \) denotes in-plane bending, and \( \text{OPB} \) denotes out-of-plane bending. Expressions for \( f_{\text{axial}}, f_{\text{IPB}} \) and \( f_{\text{OPB}} \) are given in the following for various types of joints.

105 Implementation of LJFs in conventional frame analysis models requires springs, whose spring stiffnesses are equal to the inverse of the local joint flexibilities, to be included between the brace end and the corresponding point on the chord surface. Alternatively, a short flexible beam element can be included between the brace end and the chord at the chord surface.

106 LJFs are given separately for different joint types. However, note that for multi-brace joints, such as X and K joints, the LJFs are dependent on the load pattern. This implies that for a given load case, the joint should be classified by the loads or the load pattern, rather than by its actual geometry. This further implies that a multi-brace joint may be classified as a different joint type than the one which is given by its geometry, or it may be classified as a combination of joint types. In the former case, its LJFs shall be calculated according to the formulae given for the joint type to which the joint has become classified. In the latter case, its LJFs shall be calculated as

\[
LJF = |\lambda Y LJF_Y + \lambda X LJF_X + \lambda K LJF_K|
\]

in which the \( \lambda \) values are the fractions corresponding to the joint type designated by the subscript when the joint is classified by loads.

107 It is important to include LJFs not only in joints which are being analysed, but also in joints which influence the force distribution at the joints which are being analysed.

108 The expressions for LJFs are developed for planar joints. For fatigue assessments in a traditionally braced jacket structure, the expressions can be applied to multi-planar joints as well, as long as these joints are un-stiffened and non-overlapping.

109 According to the above, the following steps should thus be included in a global analysis of a wind turbine support structure, based on a conventional frame analysis model of beam elements:

1) Classification of joints (T/Y/X/XT joints) by load pattern, i.e. not by geometry.
2) Implementation of local joint flexibility in all joints according to classification and parametric expressions by Buitrago.
3) Calculation of sectional forces at the surface footprint of the brace-to-chord connection.

The parametric expressions for calculation of LJFs for tubular joints are given in the following.

Table A1 Non-dimensional influence factor expressions for local joint flexibility of single-brace joints

\[
\begin{align*}
\bar{f}_{ax} &= 5.69 \tau^{-0.111} \exp(-2.251\beta) \gamma^{-1.898} \sin^{1.769} \theta \\
\bar{f}_{ipb} &= 1.39 \tau^{-0.238} \beta^{-2.245} \gamma^{1.898} \sin^{1.240} \theta \\
\bar{f}_{opb} &= 55 \tau^{-0.220} \exp(-4.076\beta) \gamma^{2.417} \sin^{1.883} \theta
\end{align*}
\]

Table A2 Non-dimensional influence factor expressions for local joint flexibility of X joints

\[
\begin{align*}
\bar{f}_{ax}^{\delta_1} &= 8.94 \tau^{-0.198} \exp(-2.759\gamma) \gamma^{1.791} \sin^{1.700} \theta \\
\bar{f}_{ipb}^{\delta_1} &= 67.60 \tau^{-0.063} \exp(-4.056\beta) \gamma^{1.892} \sin^{1.235} \theta \\
\bar{f}_{opb}^{\delta_1} &= 73.95 \tau^{-0.300} \exp(-4.478\beta) \gamma^{2.347} \sin^{1.926} \theta \\
\bar{f}_{ax}^{\delta_2} &= \tau^{-0.11} (-353 + 1197 \beta - 1108 \beta \sin \theta - 40 \beta y + 50 \gamma \sin \theta) \\
\bar{f}_{ipb}^{\delta_2} &= \tau^{-0.1} (26 - 75 \beta^2 - 8.5 \beta \sin \theta + 85 \beta \gamma - 7.4 \gamma \sin \theta) \\
\bar{f}_{opb}^{\delta_2} &= \tau^{-0.1} (2249 - 5879 \beta + 5515 \beta \sin \theta + 221 \beta y - 358 \gamma \sin \theta) \\
\end{align*}
\]

Table A3 Non-dimensional influence factor expressions for local joint flexibility of K joints

\[
\begin{align*}
\bar{f}_{ax}^{\delta_1} &= 5.99 \tau^{-0.114} \exp(-2.163\beta) \gamma^{1.869} \sin^{1.469} \theta \sin^{0.000} \phi \sin^{0.089} \theta_2 \\
\bar{f}_{ipb}^{\delta_1} &= 52.2 \tau^{-0.119} \exp(-3.835\beta) \gamma^{1.934} \sin^{1.417} \theta \sin^{0.011} \phi \sin^{0.108} \theta_2 \\
\bar{f}_{opb}^{\delta_1} &= 49.7 \tau^{-0.251} \exp(-4.163\beta) \gamma^{-2.440} \sin^{1.865} \theta \sin^{0.004} \phi \sin^{0.054} \theta_2 \\
\bar{f}_{ax}^{\delta_2} &= 3.93 \tau^{-0.113} \exp(-2.198\beta) \gamma^{1.847} \sin^{0.056} \phi \sin^{0.837} \theta \sin^{0.784} \theta_2 \\
\bar{f}_{ipb}^{\delta_2} &= \bar{f}_{ipb}^{\delta_1} - 1.83 \tau^{-0.212} \beta^{-2.102} \gamma^{-1.872} \sin^{0.020} \phi \sin^{1.249} \theta \sin^{0.060} \theta_2 \\
\bar{f}_{opb}^{\delta_2} &= 4.37 \tau^{-0.298} \exp(-3.814\beta) \gamma^{2.875} \sin^{0.149} \phi \sin^{0.885} \theta \sin^{1.109} \theta_2 \\
\end{align*}
\]

\(\phi\) and \(\theta_y\) and \(\theta_x\) = Axial Deflection and IPB and OPB Rotations

Subscripts 1 and 2 = Brace 1 and Brace 2

\[
\begin{align*}
\bar{f}_{ax}^{\delta_1} &= 3.91 \exp(-2.265\beta) \gamma^{-2.010} \sin^{1.811} \theta \sin^{0.029} \theta_2 \\
\bar{f}_{ipb}^{\delta_1} &= 1.86 \beta^{-2.093} \gamma^{1.766} \sin^{0.029} \theta \sin^{0.036} \theta_2 \\
\bar{f}_{opb}^{\delta_1} &= 54.2 \exp(-3.959\beta) \gamma^{2.403} \sin^{0.001} \theta \sin^{1.856} \theta \sin^{0.009} \theta_2 \\
\bar{f}_{ax}^{\delta_2} &= 0.48 \beta^{-1.269} \gamma^{2.032} \sin^{0.072} \theta \sin^{0.949} \theta \sin^{0.054} \theta_2 \\
\bar{f}_{ipb}^{\delta_2} &= 0.75 \beta^{-3.000} \gamma^{2.063} \sin^{1.079} \theta \sin^{0.533} \theta \sin^{0.056} \theta_2 \\
\bar{f}_{opb}^{\delta_2} &= 1.16 \beta^{-2.008} \gamma^{2.250} \sin^{0.017} \theta \sin^{1.090} \theta \sin^{1.089} \theta_2 \\
\end{align*}
\]

\(\beta = \) Absolute value of \(g / D\)

\[
\begin{align*}
\bar{f}_{ax} &= \text{LJF}_{ax} \times E \times D \cdot \bar{f}_{ipb} = \text{LJF}_{ipb} \times E \times D^3 ; \bar{f}_{opb} = \text{LJF}_{opb} \times E \times D^3
\end{align*}
\]
APPENDIX C
STRESS CONCENTRATION FACTORS FOR GIRTH WELDS

A. Calculation of Stress Concentration Factors for Hot Spots

A 100 General

101 Stress concentration factors (SCFs) for hot spot stresses in tube-to-tube girth welds can be calculated by means of one of the equations given in Table A1.

<table>
<thead>
<tr>
<th>Degree of Conservatism</th>
<th>Equation</th>
<th>Equation</th>
<th>Nomenclature</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>A</td>
<td>$SCF = 1 + \frac{3e}{T_1}$</td>
<td>$T$: Member thickness $T_1 \leq T_2$ $e$: Wall centre line offset between Tube 1 and Tube 2</td>
</tr>
<tr>
<td>Low</td>
<td>B</td>
<td>$SCF = 1 + \frac{6e}{T_1}\left(1 + \frac{T_2}{T_1}\right)$</td>
<td></td>
</tr>
</tbody>
</table>

102 Equation A is for the SCF between two plates of equal thickness and will always yield conservative results when applied to girth welds including girth welds with differences in wall thickness. Equation B is an extension of Equation A, accounting for differences in wall thickness.

103 Distinction is to be made between design misalignments $\delta$ (e.g., thickness step) and misalignments from manufacturing tolerances $x$ (e.g., due to out-of-roundness).

104 The SCF due to design misalignment $\delta$ is always to be taken into account. If the manufacturing misalignment $x$ is larger than 10% of the smaller thickness, the fraction exceeding 10% of this thickness shall be included when the wall centre line offset $e$ is calculated. This implies that the wall centre line offset shall be calculated as

$$e = \delta + (x - 0.1T_1)$$

Misalignment from manufacturing tolerances $x$ below 0.1$T_1$ is covered by detail categories; thus no further SCF is to be taken into account.

105 Manufacturing tolerances for the local wall centre line misalignment are hence to be included in the determination of the SCF. If the location and magnitude of the fabrication misalignments are unknown, i.e., they are not measured; the tolerances are to be applied in the direction that gives the highest SCF. The maximum fabrication tolerances given in Figure 1 can in general be applied.

106 However, it should be noted that if very strict fabrication tolerances are secured, the tolerances will be less than the tolerances given in Figure 1.

<table>
<thead>
<tr>
<th>Single Sided Full Penetration Welds</th>
<th>Double Sided Full Penetration Welds</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Single Sided Full Penetration Welds" /></td>
<td><img src="image2" alt="Double Sided Full Penetration Welds" /></td>
</tr>
<tr>
<td>$e_{fab} = \min \left{ \frac{3mm}{0.2T_1} \right}$</td>
<td>$e_{fab} = \min \left{ \frac{6mm}{0.2T_1} \right}$</td>
</tr>
</tbody>
</table>

Figure 1
Fabrication tolerances for tube-to-tube girth welds. $T_1$ is the smallest wall thickness of the adjoining tubes.
APPENDIX D
STRESS EXTRAPOLATION FOR WELDS

A. Stress Extrapolation to Determine Hot Spot Stresses

100 General

Since stress singularities are present at weld roots and weld toes, stress extrapolation is required to determine hot spot stresses at welds. Figure 1 illustrates how the stress distribution over a plate or tube wall thickness varies between zones of different proximity to a weld. In the notch stress zone, the stress at the weld approaches infinity. The stresses in the geometric stress zone are used as a basis for extrapolation to find the hot spot stress at the weld.

Figure 1
Definition of stresses in welded structures. The three lower drawings show how the distribution of stresses through the thickness of a plate or tube wall varies in different stress zones

102 For welds in tubular joints, the hot spot stress is found by linear extrapolation as defined in Figure 2.

Figure 2
Definition of the geometric stress zone in tubular joints. The hot spot stress is calculated by a linear extrapolation of the stresses in the geometric stress zone to the weld toe
For welds in plate structures and for girth welds in tubular sections, the hot spot stress is found by linear extrapolation as defined in Figure 3.

For determination of hot spot stresses by finite element analysis, the notch stress as resulting from the analysis shall be excluded and the hot spot stress shall be calculated by extrapolation from the geometric stresses. The stress concentration factor shall be calculated on the basis of the extrapolated geometric stresses. The definition of the hot spot location (weld toe or weld root singularity) for stress extrapolation is given in Figure 4 for different modelling approaches in the finite element analysis.

Stress extrapolations, which are based on finite element analyses, shall be based on surface stresses, i.e. not the midline stress from shell models. The most correct stress to use is the normal-to-weld stress. Unless otherwise agreed, the surface stress that is used should be based on averaged nodal stresses.

### Figure 3
**Stress extrapolation positions for plate structures and girth welds**
Distances are measured from the notch, i.e. typically the weld toe or the weld root. The positions 0.4 T/1.0 T are recommended in IIW94, while the positions 0.5 T/1.5 T are recommended by NORSOK.

### Figure 4
**Location of weld singularity for hot spot stress extrapolation dependent on element types used in tubular joint FE models**
The grey arrows define the primary positions to be used as the location of the weld singularity when the stress extrapolation is to be carried out. The light grey arrow pointing at the imaginary surface intersection in shell models defines an alternative location, which may be adopted for shell models if it can be justified. The locations marked by the dark arrows, i.e. “imaginary weld toes” in FE models where the weld is not modelled, may not be used as the location of the weld singularity when the stress extrapolation is to be carried out.
APPENDIX E
TUBULAR CONNECTIONS – FRACTURE MECHANICS ANALYSES AND CALCULATIONS

A. Stress Concentrations at Tubular Joints

A 100 General

101 High stress concentrations normally exist at the weld toe of tubular joints. The stresses may be divided into three types as shown schematically in Figure 1:

1) The geometric stress which depends on the structural geometry of the joint
2) The notch stress, which depends on the local geometry configuration of the brace-weld-chord connection
3) The local stress at the weld toe due to the geometry of the weld bead

Figure 1
Definition of stresses at Tubular Joint

The geometric stress can be defined by a linear extrapolation of two stresses to the weld toe of the joint, see also Appendix D for definition of stress extrapolation points. Since the hot spot stress is defined by extrapolating the stresses at points A and B in Figure 1, it is a rather arbitrary value and it will not represent the actual stress condition at the weld toes. However, the hot spot stress is a useful parameter and it is normally used for both fatigue design and for comparisons with test data for tubular joints.

The notch stress can be defined as the locally raised stress between point B and the weld toe.

The local stress at the weld toe depends on the local geometry of the weld bead, but it is independent of the joint geometry. The local stress at the weld toe quickly decays and may only be influential up to about 2 to 3 mm in depth.

The local stress concentration due to the local geometry of the weld bead may be taken into account in fracture mechanics calculations using the geometry correction factor, $F_G$, which is given in C200.

B. Stresses at Tubular Joints

B 100 General

101 Figure 2 shows a schematic view of the stresses which may be expected to be present at a tubular joint.

In Figure 2a, the stresses due to the global bending moment at the joint are shown. These stresses can be computed by applying simple beam theory. The stresses may be assumed constant through the thickness of the chord wall, where the fatigue crack penetrates.

102 When a load is applied at the top of the brace, a part of the chord wall is pulled up or pushed down to accommodate the deformation of the brace, see Figure 2b. It may be noted that the centre of rotation of the brace is at the intersection between the centre line of the brace and the line A-B, see Figure 2a. The deformation of brace results in tensile or compressive membrane stresses in the chord wall. Tensile membrane stresses arise at side A when the load acts in the direction indicated by $-P$ in Figure 2a.

103 As illustrated in Figure 2c, the chord wall further
deforms and local bending stresses arise in the chord wall. Typically a high percentage of the total stresses in the hot spot areas are due to this local plate bending. Hence, the degree-of-bending parameter, DoB, defined as the ratio between the bending stress and the total stress at the outer side of the chord wall, is typically 70 to 80% for tubular joints.

C. Stress Intensity Factor

C 100 General

The stress intensity factor for a semi-elliptical surface crack subjected to tensile membrane stress, $S_m$, and bending stress, $S_b$, can be expressed by the following semi-empirical equation,

$$ K = \left( F_m S_m + F_b S_b \right) \sqrt{\pi c} \quad (E.1) $$

$S_m$ = tensile membrane stress component

$S_b$ = outer-fibre bending stress component

$c$ = crack depth

$F$ = correction factor depending on structural geometry, crack size and shape, proximity of the crack tip to free surfaces and the type of loading. Subscript “m” refers to membrane and the subscript “b” refers to bending.

It should be emphasised, that the expression in eqn. (E.1) was derived for statically determinate flat plate configurations. In the case of tubular joints, which contain some degree of redundancy, the cracked section may transfer significantly lower load as a consequence of the load shedding from the cracked section to less stressed parts of the joint, see C500.

C 200 Correction factor for membrane stress component

An approximate method for calculation of the stress intensity factor for a semi-elliptical crack in a welded structural detail is outlined in the following. Reference is made to Figure 3.

Figure 3
Schematic of semi-elliptical surface crack growing from weld toe

The elliptical crack shape correction factor, $F_E$, is given by

$$ F_E = \frac{1}{E_k} \left[ \sin^2 \varphi + \frac{c^2}{b^2} \cos^2 \varphi \right]^{1/4} \quad (E.5) $$

in which the symbols used are explained in Figure 4. The value of $F_E$ is largest where the minor axis intersects the crack front (point A in Figs. 3 and 4). At this point $\varphi = \pi/2$ and eqn. (E.5) reduces to

$$ F_E = \frac{1}{E_k} \quad (E.6) $$

The value of $E_k$ in eqns. (X.5 and X.6) is the complete elliptical integral of the second kind. i.e.

$$ E_k = \int_{\pi/2}^{\pi} \sqrt{1 - \left( \frac{b^2 - c^2}{b^2} \sin^2 \theta \right)} \, d\theta \quad (E.7) $$

which depends only upon the semi-axis ratio, $c/b$. The value of the elliptical integral varies from $E_k = \pi/2$ for the circular crack, $c/b = 1$, to a value of $E_k = 1.0$ for the tunnel crack, as the semi-axis ratio, $c/b$, approaches zero.

A good approximation to eqn. (E.6) is obtained through the expression:

$$ F_E = \left[ 1 + 4.5945 \left( \frac{c}{2b} \right)^{1.65} \right]^{-1/2} \quad (E.8) $$

which also pertains to point A in Figs. 3 and 4.

The geometry correction factor, $F_G$, can be calculated applying the following formula:

$$ F_G = \frac{2}{\pi} \int_{-c}^{c} \frac{\sigma(x)}{\sqrt{c^2 - x^2}} \, dx \quad (E.9) $$

where $\sigma(x)$ is the stress distribution in the un-cracked body at the line of potential crack growth due to a unit remote applied stress, and $c$ is the physical crack length. $\sigma(x)$ may, for example, be determined by a finite element calculation.

If only a finite number of stress values, $\sigma_i (i = 1, 2, \ldots, n)$, are known, the following equation may be used instead of eqn. (E.9)
FG = \frac{2}{\pi} \sum_{i=1}^{n} \left[ \arcsin \left( \frac{a_i + 1}{c} \right) - \arcsin \left( \frac{a_i}{c} \right) \right] \sigma_i \sigma_j \quad (E.10)

where \((a_{i+1} - a_i)\) is the width of stress element \(i\) carrying the stress \(\sigma_i\) and \(j\) is the number of discrete stress elements from the centre of the crack to the physical crack tip, see Figure 5.

\[\text{Figure 5} \quad \text{Crack subjected to pairs of discrete stresses}\]

Since the fatigue crack in a tubular connection or joint will initiate at the weld toe as a semi-elliptical crack and finally propagate through the thickness of the chord wall, the same stress intensity factor as given in eqn. (E.1) can be applied:

\[F_M = F_S \cdot F_E \cdot F_T \cdot F_Gm \quad (E.11)\]

where

\[F_S = 1.12 - 0.12 \cdot \frac{c}{b} \quad (E.12)\]

\[F_E = 1 + 4.5945 \left( \frac{c}{2b} \right)^{1.65} \quad (E.13)\]

\[F_T = \frac{1}{\sec \left( \frac{\pi}{2t} \right)} \quad (E.14)\]

\[F_Gm = \text{Geometry correction factor for the membrane stress component to be calculated according to eqn. (E.9) or eqn. (E.10).}\]

In eqn. (E.14), \(t\) denotes the wall thickness.

**C 300 Correction factor for bending stress component**

At the deepest point of the crack front of a semi-elliptical surface crack, the stress intensity factor correction for the bending stress component can be determined as

\[F_b = \frac{F_{Gb}}{F_Gm} \cdot H \cdot Fm \quad (E.15)\]

where

\[H = 1 + G_1 \cdot \left( \frac{c}{t} \right) + G_2 \cdot \left( \frac{c}{t} \right)^2 \quad (E.16)\]

\[G_1 = -1.22 - 0.12 \cdot \frac{c}{b} \quad (E.17)\]

\[G_2 = 0.55 - 1.05 \left( \frac{c}{b} \right)^{0.75} + 0.47 \left( \frac{c}{b} \right)^{1.5} \quad (E.18)\]

for \(\frac{c}{b} \leq 1\).

In general, the geometry correction factor \(F_{Gb}\) for the bending stress component is different from \(F_{Gm}\) for the membrane stress component. \(F_{Gb}\) can be calculated from the results of a finite element analysis applying eqn. (E.9) or eqn. (E.10).

In Figure 6, the parameter \(H\) (which is equal to the ratio between the stress intensities for bending and membrane stress components, \(F_{Gb}/F_{Gm}\)) is plotted against the relative crack depth \(c/t\).

\[\text{Figure 6} \quad \text{Ratio between stress intensity factors for bending and membrane stress components}\]

It appears from Figure 6 that the reduction in \(H\) for increasing crack depth is largest for the semi-circular surface crack \((c/b = 1)\). In Figure 6 it may also be seen that for high values of the semi-axis ratio \(c/b\) and large relative crack depths, the parameter \(H\) becomes negative and thus the bending effect may lead to a reduction in the total stress intensity and hence to lower crack growth rates.

**C 400 Crack shape and initial crack size**

\[c_i = 0.1 \text{ mm} \]

**C 500 Load Shedding**

The stress distribution through a tubular joint is strongly affected by the presence of a crack. As a crack is growing through the hot spot region, the load is redistributed to less stressed parts of the joint — the load shedding effect.

A simplified model can be applied to model load shedding. By a hinge analogy the membrane stress component in the cracked section can be assumed to be unaffected by the crack, whereas the bending stress component is allowed to decrease linearly with crack depth according to the expression:

\[S_b = S_{b0} \left( 1 - \frac{c}{t} \right) \quad (E.19)\]

where \(S_{b0}\) is the bending stress component of the hot spot stress at the outer side of the chord wall in the un-cracked state. It may be noted that eqn. (E.19) has been implemented in a fracture mechanics code for crack growth analysis in weld geometries.
C 600 Crack Growth

601 The crack growth can be calculated using the following relation

\[
\frac{dc}{dn} = C \left( \Delta K_{\text{eff}} - \Delta K_{\text{eff,th}}^m \right), \text{ for } \Delta K_{\text{eff}} \geq \Delta K_{\text{eff,th}}^m \quad (E.20)
\]

\[
\frac{dc}{dn} = 0, \text{ for } \Delta K_{\text{eff}} < \Delta K_{\text{eff,th}}^m
\]

For the fracture mechanics calculations the crack growth coefficients given in Table C1 can be applied:

### Table C1 Crack growth coefficients

<table>
<thead>
<tr>
<th>Welds in air and in seawater with adequate corrosion protection</th>
<th>Mean value</th>
<th>Mean value + 2 standard deviations</th>
<th>Value corresponding to mean value of logC</th>
<th>Value corresponding to mean + 2 st.dev. of logC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>-12.96</td>
<td>-12.48</td>
<td>1.1 \cdot 10^{-13}</td>
<td>3.3 \cdot 10^{-13}</td>
</tr>
<tr>
<td>Welds subjected to seawater without corrosion protection</td>
<td>-13.47</td>
<td>-12.80</td>
<td>3.4 \cdot 10^{-14}</td>
<td>1.6 \cdot 10^{-13}</td>
</tr>
</tbody>
</table>

Here, \(\mu_{\log C}\) denotes the mean value of log\(C\), and \(\sigma_{\log C}\) denotes the standard deviation of log\(C\).

\(\Delta K_{\text{eff,th}}^m = 79.1 \text{ MPa} \sqrt{\text{mm}}\) (valid in air as well as in seawater with adequate corrosion protection)

602 The fatigue life can then be calculated by applying the method outlined above and using eqn. (E.20). For deterministic fatigue life calculations, the data tabulated for the mean + 2 standard deviations of log\(C\) are to be applied. For probabilistic fatigue life calculations, the data tabulated for the mean value of log\(C\) are to be applied. The fatigue life is calculated based on the through thickness crack criterion for the final crack size \(c_f\), i.e. \(c_f \sim t\), where \(t\) is the wall thickness.

603 Reference is made to BS 7910 for an alternative method for fracture mechanics analyses and calculations.
**APPENDIX F**

**PILE RESISTANCE AND LOAD-DISPLACEMENT RELATIONSHIPS**

---

**A. Axial Pile Resistance**

**A 100 General**

**A 101** Axial pile resistance is composed of two parts

- accumulated skin resistance
- tip resistance.

For a pile in a stratified soil deposit of $N$ soil layers, the pile resistance $R$ can be expressed as

$$ R = R_T + R_S = \sum_{i=1}^{N} f_{Si} A_{Si} + q_T A_T $$

where $f_{Si}$ is the average unit skin friction along the pile shaft in layer $i$, $A_{Si}$ is the shaft area of the pile in layer $i$, $q_T$ is the unit end resistance, and $A_T$ is the gross tip area of the pile.

---

**A 200 Clay**

**A 201** For piles in mainly cohesive soils, the average unit skin friction $f_{Si}$ may be calculated according to

1. **total stress methods**, e.g. the $\alpha$ method, which yields

   $$ f_{Si} = \alpha s_u $$

   in which

   $$ \alpha = \begin{cases} 1 \frac{1}{2} \frac{s_u}{p_0'} & \text{for } \frac{s_u}{p_0'} \leq 1.0 \\ 1 \frac{1}{2} \frac{s_u}{p_0'} & \text{for } \frac{s_u}{p_0'} > 1.0 \end{cases} $$

   where $s_u$ is the undrained shear strength of the soil and $p_0'$ is the effective overburden pressure at the point in question.

2. **effective stress methods**, e.g. the $\beta$ method, which yields

   $$ f_{Si} = \beta p_0' $$

   in which $\beta$ values in the range 0.10 to 0.25 are suggested for pile lengths exceeding 15 m.

3. **semi-empirical $\lambda$ method**, by which the soil deposit is taken as one single layer, for which the average skin friction is calculated as

   $$ f_S = \lambda (p_{0\text{m}}' + 2s_{um}) $$

   where $p_{0\text{m}}'$ is the average effective overburden pressure between the pile head and the pile tip, $s_{um}$ is the average undrained shear strength along the pile shaft, and $\lambda$ is the dimensionless coefficient, which depends on the pile length as shown in Figure 1. Hence, by this method, the total shaft resistance becomes $R_S = f_S A_S$, where $A_S$ is the pile shaft area.

For long flexible piles, failure between pile and soil may occur close to the seabed even before the soil resistance near the pile tip has been mobilized at all. This is a result of the flexibility of the pile and the associated differences in relative pile-soil displacement along the length of the pile. This is a length effect, which for a strain-softening soil will imply that the static capacity of the pile will be less than that of a rigid pile.

---

**A 300 Sand**

**A 301** For piles in mainly cohesionless soils (sand), the average unit skin friction $f_{Si}$ may be calculated according to

$$ f_{Si} = K p_0' \tan (\delta \leq f_l) $$

in which $K = 0.8$ for open-ended piles and $K = 1.0$ for closed-ended piles, $p_0'$ is the effective overburden pressure, $\delta$ is the angle of soil friction on the pile wall as given in Table A1, and $f_l$ is a limiting unit skin friction, see Table A1 for guidance.

The unit tip resistance of plugged piles in cohesionless soils can be calculated as

$$ q_p = N_q p_0' \leq q_l $$

in which the bearing factor $N_q$ can be taken from Table A1 and $q_l$ is a limiting tip resistance, see Table A1 for guidance.

The unit tip resistance of piles in cohesive soils can be calculated as

$$ q_p = N_s s_u $$

where $N_s = 9$ and $s_u$ is the undrained shear strength of the soil at the pile tip.
The t-z curves can be generated according to a method by which a nonlinear relation applies between the origin and the point where the maximum skin resistance \( t_{\text{max}} \) is reached, in which \( R \) denotes the radius of the pile, \( G_0 \) is the initial shear modulus of the soil, \( z_{\text{IF}} \) is a dimensionless zone of influence, defined as the radius of the zone of influence around the pile divided by \( R \), and \( r_f \) is a curve fitting factor. For displacements \( z \) beyond the displacement where \( t_{\text{max}} \) is reached, the skin resistance \( t \) decreases in linear manner with \( z \) until a residual skin resistance \( t_{\text{res}} \) is reached. For further displacements beyond this point, the skin resistance \( t \) stays constant. An example of t-z curves generated according to this method is given in Figure 2. The maximum skin resistance can be calculated according to one of the methods for prediction of unit skin friction given above.

For clays, the initial shear modulus of the soil to be used for generation of t-z curves can be taken as

\[
G_0 = 2600 \text{ kPa}
\]

However, Eide and Andersen (1984) suggest a somewhat softer value according to the formula

\[
G_0 = 600c_u - 170c_u \sqrt{OCR} - 1
\]

where \( s_u \) is the undrained shear strength of the clay, and OCR is the overconsolidation ratio. For sands, the initial shear modulus of the soil to be used for generation of t-z curves is to be taken as

\[
G_0 = \frac{m (\sigma_u \sigma_c)}{2(1 + \nu)}
\]

with \( m = 1000 \tan \phi \)

in which \( \sigma_u = 100 \text{ kPa} \) is a reference pressure and \( \sigma_c \) is the vertical effective stress, \( \nu \) is the Poisson’s ratio of the soil, and \( \phi \) is the friction angle of the soil.

### B. Laterally Loaded Piles

#### B.100 General

101 The most common method for analysis of laterally loaded piles is based on the use of so-called p-y curves. The p-y curves give the relation between the integral value \( p \) of the mobilized resistance from the surrounding soil when the pile deflects a distance \( y \) laterally. The pile is modelled as a number of consecutive beam-column elements, supported by nonlinear springs applied at the nodal points between the elements. The nonlinear support springs are characterized by one p-y curve at each nodal point, see Figure 3.

The solution of pile displacements and pile stresses in any point along the pile for any applied load at the pile head results as the solution to the differential equation of the pile

\[
EI \frac{d^4 y}{dx^4} + Q_A \frac{d^2 y}{dx^2} - p(y) + q = 0
\]

with

\[
EI \frac{d^3 y}{dx^3} + Q_A \frac{dy}{dx} = Q_L \text{ and } EI \frac{d^2 y}{dx^2} = M
\]

where \( x \) denotes the position along the pile axis, \( y \) is the lateral displacement of the pile, \( EI \) is the flexural rigidity of the pile, \( Q_A \) is the axial force in the pile, \( Q_L \) is the lateral force in the pile, \( p(y) \) is the lateral soil reaction, \( q \) is a distributed load along the pile, and \( M \) is the bending moment in the pile, all at the position \( x \).

### Table A1 Design parameters for axial resistance of driven piles in cohesionless silicious soil

<table>
<thead>
<tr>
<th>Density</th>
<th>Soil description</th>
<th>( \delta ) (degrees)</th>
<th>( f_p ) (kPa)</th>
<th>( N_q ) (——)</th>
<th>( q_1 ) (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very loose</td>
<td>Sand</td>
<td>15</td>
<td>48</td>
<td>8</td>
<td>1.9</td>
</tr>
<tr>
<td>Medium</td>
<td>Sand-silt 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loose</td>
<td>Sand</td>
<td>20</td>
<td>67</td>
<td>12</td>
<td>2.9</td>
</tr>
<tr>
<td>Medium</td>
<td>Sand-silt 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dense</td>
<td>Sand</td>
<td>25</td>
<td>81</td>
<td>20</td>
<td>4.8</td>
</tr>
<tr>
<td>Very dense</td>
<td>Sand</td>
<td>30</td>
<td>96</td>
<td>40</td>
<td>9.6</td>
</tr>
<tr>
<td>Dense</td>
<td>Sand-silt 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravel</td>
<td>Sand</td>
<td>35</td>
<td>115</td>
<td>50</td>
<td>12.0</td>
</tr>
</tbody>
</table>

1) The parameters listed in this table are intended as guidelines only. Where detailed information such as in-situ cone penetrometer tests, strength tests on high quality soil samples, model tests or pile driving performance is available, other values may be justified.

2) Sand-silt includes those soils with significant fractions of both sand and silt. Strength values generally increase with increasing sand fractions and decrease with increasing silt fractions.

![Figure 2](image-url)  
**Figure 2**

Example of t-z curves generated by model
A finite difference method usually forms the most feasible approach to achieve the sought-after solution of the differential equation of the pile. A number of commercial computer programs are available for this purpose. These programs usually provide full solutions of pile stresses and displacements for a combination of axial force, lateral force and bending moment at the pile head, i.e., also the gradual transfer of axial load to the soil along the pile according to the t-z curve approach presented above is included. Some of the available programs can be used to analyse not only single piles but also pile groups, including possible pile-soil-pile interaction and allowing for proper representation of a superstructure attached at the pile heads, either as a rigid cap or as a structure of finite stiffness.

For construction of p-y curves, the type of soil, the type of loading, the remoulding due to pile installation and the effect of scour should be considered. A recommended method for construction of p-y curves is presented in the following:

The lateral resistance per unit length of pile for a lateral pile deflection $y$ is denoted $p$. The static ultimate lateral resistance per unit length is denoted $p_u$. This is the maximum value that $p$ can take on when the pile is deflected laterally.

### B 200 Clay

For piles in cohesive soils, the static ultimate lateral resistance is recommended to be calculated as

$$p_u = \begin{cases} 
(3s_u + \gamma' X)D + J s_u X & \text{for } 0 < X \leq X_R \\
9s_u D & \text{for } X > X_R 
\end{cases}$$

where $X$ is the depth below soil surface and $X_R$ is a transition depth, below which the value of $(3s_u + \gamma' X)D + J s_u X$ exceeds $9s_u D$. Further, $D$ is the pile diameter, $s_u$ is the undrained shear strength of the soil, $\gamma'$ is the effective unit weight of soil, and $J$ is a dimensionless empirical constant whose value is in the range 0.25 to 0.50 recommended for soft normally consolidated clay.

For static loading, the p-y curve can be generated according to

$$p = p_u \left(\frac{y}{y_c}\right)^{1/3} \quad \text{for } y \leq 8y_c$$

$$p = p_u \quad \text{for } y > 8y_c$$

For cyclic loading and $X > X_R$, the p-y curve can be generated according to

$$p = \begin{cases} 
\frac{p_u}{2} \left(\frac{y}{y_c}\right)^{1/3} & \text{for } y \leq 3y_c \\
0.72 p_u & \text{for } y > 3y_c 
\end{cases}$$

For cyclic loading and $X \leq X_R$, the p-y curve can be generated according to

$$p = \begin{cases} 
\frac{p_u}{2} \left(\frac{y}{y_c}\right)^{1/3} & \text{for } y \leq 3y_c \\
0.72 p_u (1 - (\frac{X}{X_R}) - \frac{y - 3y_c}{12y_c}) & \text{for } 3y_c < y \leq 15y_c \\
0.72 p_u \frac{X}{X_R} & \text{for } y > 15y_c 
\end{cases}$$

Here, $y_c = 2.5 \varepsilon_c D$, in which $D$ is the pile diameter and $\varepsilon_c$ is the strain which occurs at one-half the maximum stress in laboratory undrained compression tests of undisturbed soil samples. For further details, reference is made to Classification Notes No. 30.4.

### B 300 Sand

For piles in cohesionless soils, the static ultimate lateral resistance is recommended to be calculated as

$$p_u = \begin{cases} 
(C_1 X + C_2 D)\gamma' X & \text{for } 0 < X \leq X_R \\
C_3 D \gamma' X & \text{for } X > X_R 
\end{cases}$$

where the coefficients $C_1$, $C_2$, and $C_3$ depend on the friction angle $\phi$ as shown in Figure 4, and where $X$ is the depth below soil surface and $X_R$ is a transition depth, below which the value of $(C_1 X + C_2 D)\gamma' X$ exceeds $C_3 D \gamma' X$. Further, $D$ is the pile diameter, and $\gamma'$ is the submerged unit weight of soil.

The p-y curve can be generated according to

$$p = Ap_u \tanh\left(\frac{kX}{Ap_u} y\right)$$
in which \( k \) is the initial modulus of subgrade reaction and depends on the friction angle \( \phi \) as given in Figure 5, and \( A \) is a factor to account for static or cyclic loading conditions as follows:

\[
A = \begin{cases} 
0.9 & \text{for cyclic loading} \\
(3 - 0.8 \frac{\gamma}{D}) \geq 0.9 & \text{for static loading}
\end{cases}
\]

For further details, reference is made to Classification Notes No. 30.4.

Figure 5
Initial modulus of subgrade reaction \( k \) as function of friction angle \( \phi \)

**B 400 Application of p-y curves**

401 The recommended nonlinear p-y curves are meant primarily for analysis of piles for evaluation of lateral pile capacity in the ULS.

402 Caution must be exercised when the recommended nonlinear p-y curves are used in other contexts than for evaluation of lateral pile capacity in the ULS. Such contexts include, but are not limited to, SLS analysis of the pile, fatigue analysis of the pile, determination of equivalent spring stiffnesses to represent the stiffness of the pile-soil system as boundary condition in analyses of the structure that the pile-soil system supports, and in general all cases where the initial slope of the p-y curves may have an impact.

403 Caution must be exercised regardless of whether the recommended nonlinear p-y curves are applied directly as they are specified on closed form or whether piece-wise linear approximations according to some discretisation of the curves are applied.

404 The p-y curves that are recommended for clay are defined as 3rd order polynomials such that they have infinite initial slopes, i.e. the initial stiffnesses of the load-displacement relationships are infinite. This is unphysical; however, the curves are still valid for use for their primary purpose, viz. evaluation of lateral pile capacity in the ULS. However, the closed-form p-y curves that are recommended for clay cannot be used directly in cases where the initial stiffness matters, such as for determination of equivalent pile head stiffnesses.

405 When a p-y curve for clay is to be used in contexts where the initial slope of the curve matters, the curve need to be discretised and approximated by a piece-wise linear curve drawn between the discretisation points. The discretisation must be carried out in such a manner that the first discretisation point of the curve beyond the origin is localised such that a correct initial slope results in the piece-wise linear representation of the p-y curve.

406 Unless data indicate otherwise, the true initial slope of a p-y curve in clay may be calculated as

\[
k = \xi \frac{P_s}{D \cdot (\varepsilon_c)^{1.25}}
\]

where \( \xi \) is an empirical coefficient and \( \varepsilon_c \) is the vertical strain at one-half the maximum principal stress difference in a static undrained triaxial compression tests on an undisturbed soil sample. For normally consolidated clay \( \xi = 10 \) is recommended, and for over-consolidated clay \( \xi = 30 \) is recommended.

407 As an alternative to localise the first discretisation point beyond the origin such that a correct initial slope results in the piece-wise linear approximation of the p-y curve for clay, the first discretisation point beyond the origin may be localised at the relative displacement \( \gamma/\gamma_C = 0.1 \) with ordinate value \( p/p_0 = 0.23 \).

408 The recommended closed form p-y curves for sand have finite initial slopes and thus final initial stiffnesses. Whenever discretised approximations to these curves are needed in analyses with piece-wise linear curves drawn through the discretisation points, it is important to impose a sufficiently fine discretisation near the origin of the p-y curves in order to get a correct representation of the initial slopes.

409 Whenever p-y curves are used to establish equivalent pile head stiffnesses to be applied as boundary conditions for analysis of structures supported by a pile-soil system, it is recommended that a sensitivity study be carried out to investigate the effect of changes in or different assumptions for the initial slopes of the p-y curves.
APPENDIX G
BEARING CAPACITY FORMULAE FOR GRAVITY BASE FOUNDATIONS

A. Forces

A 100 General

101 All forces acting on the foundation, including forces transferred from the wind turbine, are transferred to the foundation base and combined into resultant forces \( H \) and \( V \) in the horizontal and vertical direction, respectively, at the foundation-soil interface.

Figure 1
Loading under idealised conditions

In the following, it is assumed that \( H \) and \( V \) are design forces, i.e., they are characteristic forces that have been multiplied by their relevant partial load factor \( \gamma_f \). This is indicated by index \( d \) in the bearing capacity formulae, hence \( H_d \) and \( V_d \). The load centre, denoted \( LC \), is the point where the resultant of \( H \) and \( V \) intersects the foundation-soil interface, and implies an eccentricity \( e \) of the vertical force \( V \) relative to the centre line of the foundation. Reference is made to Figure 1, and the eccentricity is calculated as

\[
e = \frac{M_d}{V_d}
\]

where \( M_d \) denotes the resulting design overturning moment about the foundation-soil interface.

B. Correction for Torque

B 100 General

101 When a torque \( M_Z \) is applied to the foundation in addition to the forces \( H \) and \( V \), the interaction between the torque and these forces can be accounted for by replacing \( H \) and \( M_Z \) with an equivalent horizontal force \( H' \). The bearing capacity of the foundation is then to be evaluated for the force set \( (H', V) \) instead of the force set \( (H, V) \). The equivalent horizontal force can be calculated as

\[
H' = \frac{2 \cdot M_Z}{l_{eff}} + \sqrt{H^2 + \left( \frac{2 \cdot M_Z}{l_{eff}} \right)^2}
\]

in which \( l_{eff} \) is the length of the effective area as determined in C100.

C. Effective Foundation Area

C 100 General

101 For use in bearing capacity analysis an effective foundation area \( A_{eff} \) is needed. The effective foundation area is constructed such that its geometrical centre coincides with the load centre, and such that it follows as closely as possible the nearest contour of the true area of the foundation base. For a quadratic area of width \( b \), the effective area \( A_{eff} \) can be defined as

\[
A_{eff} = b_{eff} \cdot l_{eff}
\]

in which the effective dimensions \( b_{eff} \) and \( l_{eff} \) depend on which of two idealised loading scenarios leads to the most critical bearing capacity for the actual foundation.

Figure 2
Quadratic footing with two approaches to how to make up the effective foundation area

Scenario 1 corresponds to load eccentricity with respect to one of the two symmetry axes of the foundation. By this scenario, the following effective dimensions are used:

\[
b_{eff} = b - 2 \cdot e, \quad l_{eff} = b
\]

Scenario 2 corresponds to load eccentricity with respect to both symmetry axes of the foundation. By this scenario, the following effective dimensions are used:

\[
b_{eff} = b_{eff} = b - e \sqrt{2}
\]

Reference is made to Figure 2. The effective area representation that leads to the poorest or most critical result for the bearing capacity of the foundation is the effective area representation to be chosen.
For a circular foundation area with radius \( R \), an elliptical effective foundation area \( A_{\text{eff}} \) can be defined as

\[
A_{\text{eff}} = 2 \left( R^2 \arccos \frac{e}{R} - e \sqrt{R^2 - e^2} \right)
\]

with major axes

\[
b_c = 2(R - e)
\]

and

\[
l_c = 2R \sqrt{1 - \left( \frac{1 - \frac{b_c^2}{2R^2}}{} \right)}
\]

The effective foundation area \( A_{\text{eff}} \) can now be represented by a rectangle with the following dimensions:

\[
l_{\text{eff}} = \frac{A_{\text{eff}}}{b_c} \quad \text{and} \quad b_{\text{eff}} = \frac{l_{\text{eff}}}{l_c}
\]

For an area shaped as a double symmetrical polygon (octagonal or more), the above formulae for the circular foundation area can be used provided that a radius equal to the radius of the inscribed circle of the polygon is used for the calculations.

**D. Bearing Capacity**

**D 100 General**

101 For fully drained conditions and failure according to Rupture 1 as indicated in Figure 1, the following general formula can be applied for the bearing capacity of a foundation with a horizontal base, resting on the soil surface:

\[
q_d = \frac{1}{2} \eta b_{\text{eff}} N_p s_q i_q + p_0 N_s q_i + c_d N_c i_c
\]

For undrained conditions, which imply \( \phi = 0 \), the following formula for the bearing capacity applies:

\[
q_d = c_{ud} N_c \cdot s_c \cdot i_c^0 + p_0
\]

The symbols used have the following explanations:

- \( q_d \) design bearing capacity \([\text{kN/m}^2]\)
- \( \eta \) effective (submerged) unit weight of soil \([\text{kN/m}^3]\)
- \( p_0 \) effective overburden pressure at the level of the foundation-soil interface \([\text{kN/m}^2]\)
- \( c_d \) design cohesion or design undrained shear strength assessed on the basis of the actual shear strength profile, load configuration and estimated depth of potential failure surface \([\text{kN/m}^2]\)

- \( N_p, N_q, N_c \) bearing capacity factors, dimensionless
- \( s_q, s_i, s_c \) shape factors, dimensionless
- \( i_q, i_l, i_c \) inclination factors, dimensionless

102 In principle, the quoted formulae apply to foundations, which are not embedded. However, the formulae may also be applied to embedded foundations, for which they will lead to results, which will be on the conservative side. Alternatively, depth effects associated with embedded foundations can be calculated according to formulae given in DNV Classification Notes No. 30.4.

The calculations are to be based on design shear strength parameters:

\[
c_{ud} = \frac{c}{\gamma_c} \quad \text{and} \quad \phi_d = \arctan \left( \frac{\tan(\phi)}{\gamma_{\phi}} \right)
\]

The material factors \( \gamma_c \) and \( \gamma_{\phi} \) must be those associated with the actual design code and the type of analysis, i.e. whether drained or undrained conditions apply.

The dimensionless factors \( N, s \) and \( i \) can be determined by means of formulae given in the following.

**D 200 Bearing capacity formulae for drained conditions**

201 Bearing capacity factors \( N \):

\[
N_q = e^{x \tan \phi_d} \left( \frac{1 + \sin \phi_d}{1 - \sin \phi_d} \right) \quad N_c = (N_q - 1) \cdot \cot \phi_d \quad N_f = \frac{3}{2} \cdot (N_q - 1) \cdot \tan \phi_d
\]

When the bearing capacity formulae are used to predict soil reaction stresses on foundation structures for design of such structures, it is recommended that the factor \( N_f \) is calculated according to the following formula:

\[
N_f = 2 \cdot (N_q + 1) \cdot \tan \phi_d
\]

Shape factors \( s \):

\[
s_q = 1 - 0.4 \cdot \frac{b_{\text{eff}}}{l_{\text{eff}}} \quad s_i = 1 + 0.2 \cdot \frac{b_{\text{eff}}}{l_{\text{eff}}}
\]

Inclination factors \( i \):

\[
i_q = \gamma_{\phi} \left( 1 - \frac{H_{\phi}}{V_d + A_{\text{eff}} \cdot c_d \cdot \cot \phi_d} \right)^2 \quad i_l = i_q^2
\]

**E. Extremely Eccentric Loading**

**E 100 General**

101 In the case of extremely eccentric loading, i.e., an eccentricity in excess of 0.3 times the foundation width, \( e > 0.3b \), an additional bearing capacity calculation needs to be carried out,
corresponding to the possibility of a failure according to Rupture 2 in Figure 1. This failure mode involves failure of the soil also under the unloaded part of the foundation area, i.e., under the heel of the foundation. For this failure mode, the following formula for the bearing capacity applies

\[ q_d = \gamma' h_{eff} N_{q'p} + c_d N_{q'p} c_d (1.05 + \tan^3 \phi) \]

with inclination factors

\[ i_q = i_c = 1 + \frac{H}{A_{eff} \cdot c_d \cdot \tan \phi} \]
\[ i_c = i_q^2 \]
\[ i_c^2 = 0.5 + 0.5 \sqrt{1 + \frac{H}{A_{eff} \cdot c_{ud}}} \]

The bearing capacity is to be taken as the smallest of the values for \( q_d \) resulting from the calculations for Rupture 1 and Rupture 2.

### F. Sliding Resistance

#### F 100  General

101 Foundations subjected to horizontal loading must also be investigated for sufficient sliding resistance. The following criterion applies in the case of drained conditions:

\[ H < A_{eff} \cdot c + V \cdot \tan \phi \]

For undrained conditions in clay, \( \phi = 0 \), the following criterion applies:

\[ H < A_{eff} \cdot c_{ud} \]

and it must in addition be verified that

\[ \frac{H}{V} < 0.4 \]
APPENDIX H
CROSS SECTION TYPES

A. Cross Section Types

A 100 General

101 Cross sections of beams are divided into different types dependent of their ability to develop plastic hinges as given in Table A1.

<table>
<thead>
<tr>
<th>Table A1 Cross sectional types</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Cross sections that can form a plastic hinge with the rotation capacity required for plastic analysis</td>
</tr>
<tr>
<td>II Cross sections that can develop their plastic moment resistance, but have limited rotation capacity</td>
</tr>
<tr>
<td>III Cross sections where the calculated stress in the extreme compression fibre of the steel member can reach its yield strength, but local buckling is liable to prevent development of the plastic moment resistance</td>
</tr>
<tr>
<td>IV Cross sections where it is necessary to make explicit allowances for the effects of local buckling when determining their moment resistance or compression resistance</td>
</tr>
</tbody>
</table>

102 The categorisation of cross sections depends on the proportions of each of its compression elements, see Table A3.

103 Compression elements include every element of a cross section which is either totally or partially in compression, due to axial force or bending moment, under the load combination considered.

104 The various compression elements in a cross section such as web or flange, can be in different classes.

105 The selection of cross sectional type is normally quoted by the highest or less favourable type of its compression elements.

A 200 Cross section requirements for plastic analysis

201 At plastic hinge locations, the cross section of the member which contains the plastic hinge shall have an axis of symmetry in the plane of loading.

202 At plastic hinge locations, the cross section of the member which contains the plastic hinge shall have a rotation capacity not less than the required rotation at that plastic hinge location.

A 300 Cross section requirements when elastic global analysis is used

301 When elastic global analysis is used, the role of cross section classification is to identify the extent to which the resistance of a cross section is limited by its local buckling resistance.

302 When all the compression elements of a cross section are type III, its resistance may be based on an elastic distribution of stresses across the cross section, limited to the yield strength at the extreme fibres.

Table A2 Coefficient related to relative strain

<table>
<thead>
<tr>
<th>Steel grade 1)</th>
<th>( \varepsilon ) 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NV-NS</td>
<td>1</td>
</tr>
<tr>
<td>NV-27</td>
<td>0.94</td>
</tr>
<tr>
<td>NV-32</td>
<td>0.86</td>
</tr>
<tr>
<td>NV-36</td>
<td>0.81</td>
</tr>
<tr>
<td>NV-40</td>
<td>0.78</td>
</tr>
<tr>
<td>NV-420</td>
<td>0.75</td>
</tr>
<tr>
<td>NV-460</td>
<td>0.72</td>
</tr>
<tr>
<td>NV-500</td>
<td>0.69</td>
</tr>
<tr>
<td>NV-550</td>
<td>0.65</td>
</tr>
<tr>
<td>NV-620</td>
<td>0.62</td>
</tr>
<tr>
<td>NV-690</td>
<td>0.58</td>
</tr>
</tbody>
</table>

1) The table is not valid for steel with improved weldability. See Sec. 6, Table A3, footnote 1).

2) \( \varepsilon = \frac{\sqrt{35}}{f_y} \) where \( f_y \) is yield strength
### Table A3 Maximum width-to-thickness ratios for compression elements

<table>
<thead>
<tr>
<th>Cross section part</th>
<th>Type I</th>
<th>Type II</th>
<th>Type III</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Diagram" /></td>
<td><img src="image2" alt="Diagram" /></td>
<td><img src="image3" alt="Diagram" /></td>
<td><img src="image4" alt="Diagram" /></td>
</tr>
</tbody>
</table>

- **Type I**
  - when $\alpha > 0.5$:
    - $d / t_w \leq \frac{396 \varepsilon}{13 \alpha - 1}$
  - when $\alpha \leq 0.5$:
    - $d / t_w \leq \frac{36 \varepsilon}{\alpha}$

- **Type II**
  - when $\alpha > 0.5$:
    - $d / t_w \leq \frac{456 \varepsilon}{13 \alpha - 1}$
  - when $\alpha \leq 0.5$:
    - $d / t_w \leq \frac{41.5 \varepsilon}{\alpha}$

- **Type III**
  - when $\psi > -1$:
    - $d / t_w \leq \frac{126 \varepsilon}{2 + \psi}$
  - when $\psi \leq -1$:
    - $d / t_w \leq 62 \varepsilon(1 - \psi)\sqrt{|\psi|}$

- **Tip in compression**
  - Rolled: $c / t_f \leq 10 \varepsilon$
  - Welded: $c / t_f \leq 9 \varepsilon$

- **Tip in tension**
  - Rolled: $c / t_f \leq \frac{10 \varepsilon}{\alpha \sqrt{\alpha}}$
  - Welded: $c / t_f \leq \frac{9 \varepsilon}{\alpha \sqrt{\alpha}}$

1) Compression negative
2) $\varepsilon$ is defined in Table A2
3) Valid for rectangular hollow sections (RHS) where $h$ is the height of the profile
4) $C$ is the buckling coefficient. See EN 1993-1-1 Table 5.3.3 (denoted $k_d$)
5) Valid for axial and bending, not external pressure.
APPENDIX I
EXTREME WIND SPEED EVENTS

Ref. Sec.3 B400.
APPENDIX J
SCOUR AT A VERTICAL PILE

A. Flow around a Vertical Pile

A 100 General

101 When a vertical pile is placed on a seabed, the water-particle flow associated with currents and passing waves will undergo substantial changes, see Figure 1. First, a horseshoe vortex will be formed at the base in front of the pile. Second, a vortex flow pattern in the form of vortex shedding will be formed at the lee-side of the pile. Third, the streamlines will contract at the side edges of the pile. This local change in the flow will increase the bed shear stress and the sediment transport capacity will increase accordingly. In the case of an erodible seabed, this may result in a local scour around the pile. Such scour is a threat to the stability of the pile.

B. Bed Shear Stress

B 100 General

101 The increase in the bed shear stress can be expressed in terms of the amplification factor $\alpha$, which is defined by

$$\alpha = \frac{\tau_{\text{max}}}{\tau_{\text{max,\infty}}}$$

(J.1)

in which $\tau_{\text{max}}$ is the maximum value of the bed shear stress $\tau$ when the pile structure is present and $\tau_{\text{max,\infty}}$ is the maximum value of the bed shear stress $\tau_0$ for the undisturbed flow. In the case of a steady current, $\tau_{\text{max}}$ and $\tau_{\text{max,\infty}}$ are replaced by constant $\tau$ and $\tau_0$, respectively, in the expression for $\alpha$.

102 In the case of a steady current, the amplification factor can become as large as $\alpha = 7-11$. This is due to the presence of a very significant horseshoe vortex. For waves the amplification factor is smaller.

C. Local Scour

C 100 General

101 When local scour is analysed, it is important to distinguish between clear-water scour and live-bed scour. This distinction is necessary because the development of a scour hole with time and the relationship between the scour depth and the approach-flow velocity both depend on which of the two types of scour is occurring.

102 Under ‘clear water’ conditions, i.e. when the sediments far from the pile are not in motion, a state of static equilibrium is reached when the scour hole has developed to an extent such that the flow no longer has the ability to resuspend sediment and remove it from the scour hole. Under ‘live bed’ conditions, i.e. when the sediment transport prevails over the entire bed, a state of dynamic equilibrium is reached when the rate of removal of material from the scour hole is equal to the rate at which material is being deposited in the scour hole from ambient suspended material and bed loads.

103 In the case of a steady current, the scour process is mainly caused by the presence of the horseshoe vortex combined with the effect of contraction of streamlines at the side edges of the pile. The shape of the scour hole will virtually be symmetrical, see Figure 2.

B. Bed Shear Stress

B 100 General

101 The increase in the bed shear stress can be expressed in terms of the amplification factor $\alpha$, which is defined by

$$\alpha = \frac{\tau_{\text{max}}}{\tau_{\text{max,\infty}}}$$

(J.1)

in which $\tau_{\text{max}}$ is the maximum value of the bed shear stress $\tau$ when the pile structure is present and $\tau_{\text{max,\infty}}$ is the maximum value of the bed shear stress $\tau_0$ for the undisturbed flow. In the case of a steady current, $\tau_{\text{max}}$ and $\tau_{\text{max,\infty}}$ are replaced by constant $\tau$ and $\tau_0$, respectively, in the expression for $\alpha$.

102 In the case of a steady current, the amplification factor can become as large as $\alpha = 7-11$. This is due to the presence of a very significant horseshoe vortex. For waves the amplification factor is smaller.

C. Local Scour

C 100 General

101 When local scour is analysed, it is important to distinguish between clear-water scour and live-bed scour. This distinction is necessary because the development of a scour hole with time and the relationship between the scour depth and the approach-flow velocity both depend on which of the two types of scour is occurring.

102 Under ‘clear water’ conditions, i.e. when the sediments far from the pile are not in motion, a state of static equilibrium is reached when the scour hole has developed to an extent such that the flow no longer has the ability to resuspend sediment and remove it from the scour hole. Under ‘live bed’ conditions, i.e. when the sediment transport prevails over the entire bed, a state of dynamic equilibrium is reached when the rate of removal of material from the scour hole is equal to the rate at which material is being deposited in the scour hole from ambient suspended material and bed loads.

103 In the case of a steady current, the scour process is mainly caused by the presence of the horseshoe vortex combined with the effect of contraction of streamlines at the side edges of the pile. The shape of the scour hole will virtually be symmetrical, see Figure 2.
This expression is valid for live-bed conditions, i.e. for $\theta > \theta_{cr}$, in which the Shields parameter $\theta$ is defined below together with its critical threshold $\theta_{cr}$. For steady current, which implies $KC \to \infty$, it appears from this expression that $S/D \to 1.3$. For waves it appears that for $KC < 6$ no scour hole is formed. The physical explanation for this is that no horseshoe vortex develops for $KC < 6$. The Shields parameter $S$ is defined by:

$$\theta = \frac{U_f^2}{g(s-1)d}$$  \hspace{1cm} (J.6)

where $s$ is the specific gravity of the sediment, $d$ is the grain diameter for the specific grain that will be eroded and $U_f$ is the bed shear velocity. For practical purposes, $d_{50}$ can be used for $d$, where $d_{50}$ is defined as the median grain diameter in the particle size distribution of the seabed material. The critical Shields parameter, $\theta_{cr}$, is the value of $\theta$ at the initiation of sediment motion. The critical value $\theta_{cr}$ for the Shields parameter is about 0.05 to 0.06. Seabed erosion starts when the Shields parameter exceeds the critical value.

For steady current the bed shear velocity, $U_f$, is given by the Colebrook and White equation

$$\frac{U_f}{U_r} = 6.4 - 2.5\ln\left(\frac{2.5\cdot d}{h} + \frac{4.7\cdot \nu}{h\cdot U_r}\right)$$  \hspace{1cm} (J.7)

where $\nu$ equal to $10^{-6}$ m$^2$/s is the kinematic viscosity. For waves, the maximum value of the undisturbed bed shear velocity is calculated by:

$$U_f = \frac{f_w}{2}\cdot u_{max}$$  \hspace{1cm} (J.8)

where $f_w$ is the frictional coefficient given by

$$f_w = \begin{cases} 0.04\cdot (a/k_N)^{-0.25} & a/k_N > 100 \\ 0.4\cdot (a/k_N)^{-0.75} & a/k_N < 100 \end{cases}$$  \hspace{1cm} (J.9)

Here, $a$ is the free stream amplitude, defined by

$$a = \frac{u_{max}\cdot T}{2\pi}$$  \hspace{1cm} (J.10)

and $k_N$ is the bed roughness equal to $2.5\cdot d_{50}$, where $d_{50}$ denotes the median grain diameter in the particle size distribution of the seabed material.

C 300 Lateral extension of scour hole

301 The scour depth $S$ is estimated by means of the empirical expression in eqn. (J.5), which is valid for live bed conditions. The lateral extension of the scour hole at the original level of the seabed can be estimated based on the friction angle $\phi$ of the soil, and assuming that the slope of the scour hole equals this friction angle. By this approach, the radius of the scour hole, measured at the original level of the seabed from the centre of a pile of diameter $D$, is estimated as

$$r = D + \frac{S}{2}\tan\phi$$  \hspace{1cm} (J.11)

C 400 Time scale of scour

401 The temporal evolution of the scour depth, $S$, can be expressed as:

$$S_t = S \left(1 - \exp\left(-t/T_1\right)\right)$$  \hspace{1cm} (J.12)

in which $t$ denotes the time, and $T_1$ denotes the time scale of the scour process. The time scale $T_1$ of the scour process can be found from the non-dimensional time scale $T^*$ through the following relationship

$$T^* = \sqrt{\frac{g(s-1)d^5}{h^2}}$$  \hspace{1cm} (J.13)

where $T^*$ is given by the empirical expressions:

$$T^* = \frac{1}{2000}\frac{h}{D}\cdot \theta^{-2.2}$$  \hspace{1cm} \text{for steady current}  \hspace{1cm} (J.14)

$$T^* = 10^{-6}\left(\frac{KC}{\theta}\right)^3$$  \hspace{1cm} \text{for waves}  \hspace{1cm} (J.15)
APPENDIX K
CALCULATIONS BY FINITE ELEMENT METHOD

A. Introduction

A 100 General

101 If simple calculations cannot be performed to document
the strength and stiffness of a structural component, a Finite
Element analysis should be carried out.

102 The model to be included in the analysis and the type of
analysis should be chosen with due consideration to the inter-
action of the structural component with the rest of the struc-
ture.

103 Since a FEM analysis is normally used when simple cal-
culations are insufficient or impossible, care must be taken
to ensure that the model and analysis reflect the physical reality.
This must be done by means of carrying out an evaluation of
the input to as well as the results from the analysis. Guidelines
for such an evaluation are given below.

B. Types of Analysis

B 100 General

101 Though different types of analyses can be performed by
means of FEM analysis, most analyses take the form of static
analyses for determination of the strength and stiffness of
structures or structural components. FEM analyses are usually
computer-based analyses which make use of FEM computer
programs.

B 200 Static analysis

201 In a static analysis, structural parts are commonly exam-
nined with respect to determining which extreme loads govern
the extreme stress, strain and deflection responses. As the analysis
is linear, unit loads can be applied, and the response
caused by single loads can be calculated. The actual extreme
load cases can subsequently be examined by means of linear
combinations – superposition.

B 300 Frequency analysis

301 Frequency analysis is used to determine the eigenfre-
quencies and normal modes of a structural part.

302 The FEM program will normally perform an analysis on
the basis of the lowest frequencies. However, by specifying a
shift value, it is possible to obtain results also for a set of higher
frequencies around a user-defined frequency.

Guidance note:
The normal modes resulting from a frequency analysis only rep-
resent the shape of the deflection profiles, not the actual deflec-
tions.

B 400 Dynamic analysis

401 Dynamic FEM analysis can be used to determine the time-dependent response of a structural part, e.g. as a transfer
function. The analysis is normally based on modal superposi-
tion, as this type of analysis is much less time consuming than
a ‘real’ time-dependent analysis.

B 500 Stability/buckling analysis

501 Stability/buckling analysis is relevant for slender struc-
tural parts or sub-parts. This is due to the fact that the loads
causi ng local or global buckling may be lower than the loads
causi ng strength problems.

502 The analysis is normally performed by applying a set of
static loads. Hereafter, the factor by which this set of loads has
to be multiplied for stability problems to occur is determined
by the analysis program.

B 600 Thermal analysis

601 By thermal analysis, the temperature distribution in
structural parts is determined, based on the initial temperature,
heat input/output, convection, etc. This is normally a time-de-
dependent analysis; however, it is usually not very time-con-
suming as long as one degree of freedom is present at each mod-
ell element.

Guidance note:
A thermal analysis set-up as described can be used to analyse
analogous types of problems involving other time-dependent
quantities than temperature. This applies to problems governed
by the same differential equation as the one which governs heat
transfer. An example of such an application can be found in foun-
dation engineering for analysis of the temporal evolution of set-
tlements in foundation soils.

B 700 Other types of analyses

701 The analyses listed in B200 through B600 only encom-
pass some of the types of analyses that can be performed by
FEM analysis. Other types of analyses are: plastic analyses and
analyses including geometric non-linearities.

702 Combinations of several analyses can be performed. As
examples hereof, the results of an initial frequency analysis
can be used as a basis for subsequent dynamic analysis, and the
results of a thermal analysis may be used to form a load case in a
subsequent static analysis.

C. Modelling

C 100 General

101 The results of a FEM analysis are normally documented
by plots and printouts of selected extreme response values.
However, as the structural FEM model used can be very com-
plex, it is important also to document the model itself. Even
minor deviations from the intention may give results that do
not reflect reality properly.

C 200 Model

201 The input for a FEM model must be documented thor-
oughly by relevant printouts and plots. The printed data should
preferably be stored or supplied as files on a CD-ROM

C 300 Coordinate systems

301 Different coordinate systems may be used to define the
model and the boundary conditions. Hence the coordinate sys-
tem valid for the elements and boundary conditions should be
checked, e.g. by plots. This is particularly important for beam
elements given that it is not always logical which axes are used
to define the sectional properties.

302 In a similar manner, as a wrong coordinate system for
symmetry conditions may seriously corrupt the results, the
boundary conditions should be checked.

303 Insofar as regards laminate elements, the default coordi-
nate system often constitutes an element coordinate system,
which may have as a consequence that the fibre directions are
distributed randomly across a model.
C 400 Material properties

401 Several different material properties may be used across a model, and plots should be checked to verify that the material is distributed correctly.

402 Drawings are often made by means of using units of mm to obtain appropriate values. When the model is transferred to the FEM program, the dimensions are maintained. In this case care should be taken in setting the material properties (and loads) correctly, as kg-mm-N-s is not a consistent set of units. It is advisable to use SI-units (kg-m-N-s).

C 500 Material models

501 The material model used is usually a model for isotropic material, i.e. the same properties prevail in all directions. Note, however, that for composite materials an orthotropic material model has to be used to reflect the different material properties in the different directions. For this model, material properties are defined for three orthogonal directions. By definition of this material, the choice of coordinate system for the elements has to be made carefully.

C 600 Elements

601 For a specific structural part, several different element types and element distributions may be relevant depending on the type of analysis to be carried out. Usually, one particular element type is used for the creation of a FEM model. However, different element types may be combined within the same FEM model. For such a combination special considerations may be necessary.

C 700 Element types

701 1D elements consist of beam elements. Models with beam elements are quite simple to create and provide good results for framework structures.

One difficulty may be that the sectional properties are not visible. Hence, the input should be checked carefully for the direction of the section and the numerical values of the sectional properties. Some FEM programs can generate 3D views showing the dimensions of the sections. This facility should be used, if present.

Naturally, the stresses in the connections cannot be calculated accurately by the use of beam elements only.

702 2D elements consist of shell and plate elements. Shell and plate elements should be used for parts consisting of plates or constant thickness sub-parts. As shell elements suitable for thick plates exist, the wall thickness does not need to be very thin to obtain a good representation by such elements. These elements include the desired behaviour through the thickness of the plate. The same problems as for beam elements are present for shell elements as the thickness of the plates is not shown. The thickness can, however, for most FEM programs be shown by means of colour codes, and for some programs the thickness can be shown by 3D views.

703 The stresses at connections such as welds cannot be found directly by these elements either.

704 3D elements consist of solid elements.

705 By the use of solid elements the correct geometry can be modelled to the degree of detail wanted. However, this may imply that the model will include a very large number of nodes and elements, and hence the solution time will be very long. Furthermore, as most solid element types only have three degrees of freedom at each node, the mesh for a solid model may need to be denser than for a beam or shell element model.

C 800 Combinations

801 Combination of the three types of elements is possible, however, as the elements may not have the same number of degrees of freedom (DOF) at each node, care should be taken not to create unintended hinges in the model.

802 Beam elements have six degrees of freedom in each node – three translations and three rotations, while solid elements normally only have three – the three translations. Shell elements normally have five degrees of freedom – the rotation around the surface normal is missing. However, these elements may have six degrees of freedom, while the stiffness for the last rotation is fictive.

803 The connection of beam or shell elements to solid elements in a point, respectively a line, introduces a hinge. This problem may be solved by adding additional ‘dummy’ elements to get the correct connection. Alternatively, constraints may be set up between the surrounding nodal displacements and rotations. Some FEM programs can set up such constraints automatically.

C 900 Element size and distribution of elements

901 The size, number and distribution of elements required in an actual FEM model depend on the type of analysis to be performed and on the type of elements used.

902 Generally, as beam and shell elements have five or six degrees of freedom in each node, good results can be obtained with a small number of elements. As solid elements only have three degrees of freedom in each node, they tend to be more stiff. Hence, more elements are needed.

903 The shape and order of the elements influence the required number of elements. Triangular elements are more stiff than quadrilateral elements, and first-order elements are more stiff than second-order elements.

Guidance note:
The required number of elements and its dependency on the element type applied, and the corresponding analysis results in terms of displacements and stresses are also given.
C 1000 Element quality

1001 The results achieved by a certain type and number of elements depend on the quality of the elements. Several measures for the quality of elements can be used; however, the most commonly used are aspect ratio and element warping.

1002 The aspect ratio is the ratio between the side lengths of the element. This should ideally be equal to 1, but aspect ratios of up to 3 to 5 do usually not influence the results and are thus acceptable.

1003 Element warping is the term used for non-flatness or twist of the elements. Even a slight warping of the elements may influence the results significantly.

1004 Most available FEM programs can perform checks of the element quality, and they may even try to improve the element quality by redistribution of the nodes.

1005 The quality of the elements should always be checked for an automatically generated mesh, in particular, for the internal nodes and elements. It is usually possible to generate good quality elements for a manually generated mesh.

1006 With regard to automatically generated high-order elements, care should be taken to check that the nodes on the element sides are placed on the surface of the model and not just on the linear connection between the corner nodes. This problem often arises when linear elements are used in the initial calculations, and the elements are then changed into higher-order elements for a final calculation.

1007 Benchmark tests to check the element quality for different element distributions and load cases are given by NAFEMS. These tests include beam, shell and solid elements, as well as static and dynamic loads.

C 1100 Boundary conditions

1101 The boundary conditions applied to the model should be as realistic as possible. This may require that the FEM model becomes extended to include element models of structural parts other than the particular one to be investigated. One situation where this comes about is when the true supports of a considered structure have stiffness properties which cannot be well-defined unless they are modelled by means of elements that are included in the FEM model.

When such an extended FEM model is adopted, deviations from the true stiffness at the boundary of the structural part in question may then become minor only. As a consequence of this, the non-realistic effects due to inadequately modelled boundary conditions become transferred further away to the neighbouring structural parts or sub-parts, which are now represented by elements in the extended FEM model.

C 1200 Types of restraints

1201 The types of restraints normally used are constrained or free displacements/rotations or supporting springs. Other types of restraints may be a fixed non-zero displacement or rotation or a so-called contact, i.e. the displacement is restrained in one direction but not in the opposite direction.

1202 The way that a FEM program handles the fixed boundary condition may vary from one program to another. One approach is to remove the actual degree of freedom from the model; another is to apply a spring with a large stiffness at the actual degree of freedom. The latter approach may lead to singularities if the stiffness of the spring is much larger than the stiffness of the element model. Evidently, the stiffness can also be too small, which may in turn result in singularities.

An appropriate value for the stiffness of such a stiff spring may be approximately 10^6 times the largest stiffness of the model.

1203 As the program must first identify whether the displacement has to be constrained or free, the contact boundary condition requires a non-linear calculation.

C 1300 Symmetry/antimetry

1301 Other types of boundary conditions are symmetric and antimetric conditions, which may be applied if the model and the loads possess some kind of symmetry. Taking such symmetry into account may reduce the size of the FEM model significantly.

1302 The two types of symmetry that are most frequently used are planar and rotational symmetries. The boundary conditions for these types of symmetry can normally be defined in an easy manner in most FEM programs by using appropriate coordinate systems.

1303 The loads for a symmetric model may be a combination of a symmetric and an antimetric load. This can be considered by calculating the response from the symmetric loads for a model with symmetric boundary conditions, and adding the response from the antimetric loads for a model with antimetric boundary conditions.

1304 If both model and loads have rotational symmetry, a sectional model is sufficient for calculating the response.

1305 Some FEM programs offer the possibility to calculate the response of a model with rotational symmetry by a sectional model, even if the load is not rotational-symmetric, as

---

**Table C1 Analysis of cantilever with different types of elements.**

<table>
<thead>
<tr>
<th>Element type</th>
<th>Description</th>
<th>Number of elements</th>
<th>( u_x [\text{mm}] )</th>
<th>( \sigma_{y,\text{nodes}} [\text{N/mm}^2] )</th>
<th>( \sigma_{y,\text{elem}} [\text{N/mm}^2] )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical result</td>
<td></td>
<td></td>
<td>1.9048</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>BEAM2D</td>
<td>Beam element, 2 nodes per element, 3 DOF per node, ( u_x, u_y ) and ( \theta ), 10</td>
<td>1.9048</td>
<td>600</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>PLANE2D</td>
<td>Membrane element, 4 nodes per element, 2 DOF per node, ( u_x ) and ( u_y ), 10 ( \times ) 1</td>
<td>1.9124</td>
<td>570</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TRIANG</td>
<td>Membrane element, 3 nodes per element, 2 DOF per node, ( u_x ) and ( u_y ), 10 ( \times ) 1 ( \times ) 2</td>
<td>0.4402</td>
<td>141</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 ( \times ) 2 ( \times ) 2</td>
<td>1.0316</td>
<td>333</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 ( \times ) 4 ( \times ) 2</td>
<td>1.5750</td>
<td>510</td>
<td>510</td>
</tr>
<tr>
<td>SHELL3</td>
<td>Shell element, 3 nodes per element, 6 DOF per node</td>
<td>20 ( \times ) 2 ( \times ) 2</td>
<td>1.7658</td>
<td>578</td>
<td>405</td>
</tr>
<tr>
<td>SOLID</td>
<td>Solid element, 8 nodes per element, 3 DOF per node, ( u_x, u_y ) and ( u_z ), 10 ( \times ) 1</td>
<td>1.8980</td>
<td>570</td>
<td>570</td>
<td></td>
</tr>
<tr>
<td>TETRA4</td>
<td>Solid element, 4 nodes per element, 3 DOF per node, ( u_x, u_y ) and ( u_z ), 10 ( \times ) 1 ( \times ) 1</td>
<td>0.0792</td>
<td>26.7</td>
<td>26.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 ( \times ) 2 ( \times ) 1</td>
<td>0.6326</td>
<td>239</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 ( \times ) 4 ( \times ) 1</td>
<td>1.6011</td>
<td>558</td>
<td>558</td>
</tr>
<tr>
<td>TETRA4R</td>
<td>Solid element, 4 nodes per element, 6 DOF per node</td>
<td>20 ( \times ) 2 ( \times ) 1</td>
<td>1.7903</td>
<td>653</td>
<td>487</td>
</tr>
</tbody>
</table>
the program can model the load in terms of Fourier series.

C 1400 Loads

1401 The loads applied for the FEM calculation are usually structural loads, however, centrifugal loads and temperature loads are also relevant.

1402 Structural loads consist of nodal forces and moments and of surface pressure. Nodal forces and moments are easily applied, but may result in unrealistic results locally. This is due to the fact that no true loads act in a single point. Thus, application of loads as pressure loads will in most cases form the most realistic way of load application.

C 1500 Load application

1501 The loading normally consists of several load components, and all of these components may be applied at the same time. As a slightly different load combination in a new analysis will require an entirely new calculation, this is, however, not very rational.

1502 To circumvent the problems involved with execution of an entirely new calculation when only a slightly different load combination is considered, each of the load components should be applied separately as a single load case, and the results found from each of the corresponding analyses should then be combined. In this way, a large range of load combinations can be considered. To facilitate this procedure, unit loads should be used in the single load cases, and the actual loads should then be used in the linear combinations.

1503 As only one or more parts of the total structure is modelled, care should be taken to apply the loads as they are experienced by the actual part. To facilitate such load application, ‘dummy’ elements may be added, i.e. elements with a stiffness representative of the parts which are not modelled – these are often beam elements. The loads can then be applied at the geometrically correct points and be transferred via the beam elements to the structural part being considered.

D. Documentation

D 100 Model

101 The results of a FEM analysis can be documented by a large number of plots and printouts, which can make it an overwhelming task to find out what has actually been calculated and how the calculations have been carried out.

102 The documentation for the analysis should clearly document which model is considered, and the relevant results should be documented by plots and printouts.

103 The model aspects listed in D200 through D700 can and should be checked prior to execution of the FEM analysis.

D 200 Geometry control

201 A verification of the geometric model by a check of the dimensions is an important and often rather simple task. This simple check may reveal if numbers have unintentionally been entered in an incorrect manner.

D 300 Mass – volume – centre of gravity

301 The mass and volume of the model should always be checked. Similarly, the centre of gravity should correspond with the expected value.

D 400 Material

401 Several different materials can be used in the same FEM model. Some of these may be fictitious. This should be checked on the basis of plots showing which material is assigned to each element, and by listing the material properties. Here, care should be taken to check that the material properties are given according to a consistent set of units.

D 500 Element type

501 Several different element types can be used, and here plots and listing of the element types should also be presented.

D 600 Local coordinate system

601 With regard to beam and composite elements, the local coordinate systems should be checked, preferably, by plotting the element coordinate systems.

D 700 Loads and boundary conditions

701 The loads and boundary conditions should be plotted to check the directions of these, and the actual numbers should be checked from listings. To be able to check the correspondence between plots and listings, documentation of node/element numbers and coordinates may be required.

D 800 Reactions

801 The reaction forces and moments are normally calculated by the FEM programs and should be properly checked. As a minimum, it should be checked that the total reaction corresponds with the applied loads. This is especially relevant when loads are applied to areas and volumes, and not merely as discrete point loads. For some programs it is possible to plot the nodal reactions, which can be very illustrative.

802 A major reason for choosing a FEM analysis as the analysis tool for a structure or structural part is that no simple calculation can be applied for the purpose. This implies that there is no simple way to check the results. Instead checks can be carried out to make probable that the results from the FEM analysis are correct.

D 900 Mesh refinement

901 The simplest way of establishing whether the present model or mesh is dense enough is to remesh the model with a more dense mesh, and then calculate the differences between analysis results from use of the two meshes. As several meshes may have to be created and tried out, this procedure can, however, be very time-consuming. Moreover, as modelling simplification can induce unrealistic behaviour locally, this procedure may in some cases also result in too dense meshes. Instead, an indication of whether the model or mesh is sufficient would be preferable.

D 1000 Results

1001 Initially, the results should be checked to see if they appear to be realistic. A simple check is made on the basis of an evaluation of the deflection of the component, which should, naturally, reflect the load and boundary conditions applied as well as the stiffness of the component. Also, the stresses on a free surface should be zero.

1002 Most commercial FEM programs have some means for calculation of error estimates. Such estimates can be defined in several ways. One of the most commonly used estimates is an estimate of the error in the stress. The estimated ‘correct’ stress is found by interpolating the stresses by the same interpolation functions as are used for displacements in defining the element stiffness properties.

Another way of getting an indication of stress errors is given by means of comparison of the nodal stresses calculated at a node for each of the elements that are connected to that node. Large variations indicate that the mesh should be more dense.

1003 If the results of the analysis are established as linear combinations of the results from single load cases, the load combination factors used should be clearly stated.

1004 The global deflection of the structure should be plotted with appropriately scaled deflections. For further evaluation, deflection components could be plotted as contour plots to see...
the absolute deflections.
For models with rotational symmetry, a plot of the deflection relative to a polar coordinate system may be more relevant for evaluation of the results.

**1005** All components of the stresses are calculated, and it should be possible to plot each component separately to evaluate the calculated stress distribution.

**1006** The principal stresses should be plotted with an indication of the direction of the stress component, and these directions should be evaluated in relation to the expected distribution.

**1007** As for the evaluation of the resulting stresses, also the components of the resulting strains and the principal strain should be plotted in an evaluation of the results from the analysis.
APPENDIX L
ICE LOADS FOR CONICAL STRUCTURES

A. Calculation of Ice Loads

A 100 General

Calculation of ice loads on conical structures such as ice cones in the splash zone of monopiles and gravity base structures can be carried out by application of Ralston’s formulae, which are based on plastic limit analysis.

Ralston’s formulae distinguish between upward breaking cones and downward breaking cones, see Figure 1. For offshore wind turbine structures, downward breaking cones are most common.

The horizontal force on the cone is

\[ R_H = (A_1 \sigma_f h^2 + A_2 \gamma_w h b^2 + A_3 \gamma_w h (b^2 - b_T^2)) A_4 \]

The vertical force on the cone is

\[ R_V = B_1 R_H + B_2 \gamma_w h (b^2 - b_T^2) \]

For upward breaking cones, the horizontal force on the cone is

\[ R_H = (A_1 \sigma_f h^2 + \frac{1}{9} A_4 \gamma_w h (b^2 - b_T^2)) A_4 \]

The vertical force on the cone is

\[ R_V = B_1 R_H + \frac{1}{9} B_2 \gamma_w h (b^2 - b_T^2) \]

The following symbols are used in these expressions

\( \sigma_f \) = flexural strength of ice  
\( \gamma_w \) = specific weight of seawater  
\( h \) = ice sheet thickness  
\( b \) = cone diameter at the water line  
\( b_T \) = cone diameter at top of cone

\( A_1, A_2, A_3, A_4, B_1 \) and \( B_2 \) are dimensionless coefficients, whose values are functions of the ice-to-cone friction coefficient \( \mu \) and of the inclination angle \( \alpha \) of the cone with the horizontal. Graphs for determination of the coefficients are given in Figure 2.

The argument \( k \) is used for determination of the coefficients \( A_1 \) and \( A_2 \) from Figure 2.

For upward breaking cones, \( k = \frac{\gamma_w b^2}{\sigma_f h} \) shall be used.

For downward breaking cones, \( k = \frac{\gamma_w b^2}{9 \sigma_f h} \) shall be used.

The inclination angle \( \alpha \) with the horizontal should not exceed approximately 65° in order for the theories underlying the formulae to be valid.
Figure 2
Ice force coefficients for plastic limit analysis according to Ralston’s formulae.